K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Trên tia đối của tia DC lấy E sao cho DE=BM

Xét ΔABM vuông tại B và ΔADE vuông tại D có

AB=AD

BM=DE

=>ΔABM=ΔADE

=>AM=AE

góc BAM+góc MAN+góc NAD=góc BAD=90 độ

=>góc BAM+góc NAD=45 độ

=>góc EAN=45 độ

Xét ΔEAN  và ΔMAN có

AE=AM

góc EAN=góc MAN

AN chung

=>ΔEAN=ΔMAN

=>EN=MN

C CMN=CM+MN+CN

=CM+MN+CN

=CM+ED+DN+CN

=CM+BM+DN+CN

=BC+CD=1/2*C ABCD

23 tháng 11 2017

https://www.slideshare.net/PhamNguyenThucLinh/hc-sinh-gii-hnh-hc-8

28 tháng 2 2019

Bài tập tổng hợp chương 1 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Đặt BM = DK = x thì KN = x + DN, MC = a - x, CN = a - DN

Từ kết quả của hai tam giác bằng nhau ở câu a và giả thiết ta có:

Bài tập tổng hợp chương 1 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án ⇒ Δ AMN = Δ AKN ( c - g - c )

⇒ MN = KN (cạnh tương ứng bằng nhau)

Khi đó, chu vi của tam giác MCN là

MC + CN + MN = a - x + a - DN + x + DN = 2a.

4 tháng 4 2018

Bài tập: Hình vuông | Lý thuyết và Bài tập Toán 8 có đáp án

Đặt BM = DK = x thì KN = x + DN, MC = a - x, CN = a - DN

Từ kết quả của hai tam giác bằng nhau ở câu a và giả thiết ta có:

Bài tập: Hình vuông | Lý thuyết và Bài tập Toán 8 có đáp án ⇒ Δ AMN = Δ AKN ( c - g - c )

⇒ MN = KN (cạnh tương ứng bằng nhau)

Khi đó, chu vi của tam giác MCN là

MC + CN + MN = a - x + a - DN + x + DN = 2a.

22 tháng 8 2021

Gọi chu vi tam giác CMN bằng p.

Tìm ý tưởng: p = BC + CD, hệ thức này gợi cho ta đến tính chất của đường tròn bàng tiếp (xem bài 2). Ở đây là đường tròn bàng tiếp góc C của ΔCMN.

Gọi B’, D’ lần lượt là các tiếp điểm của đường tròn bàng tiếp góc C của ΔCMN với đường kéo dài cạnh CM, CN.

Ta đã có, CB’ = CD’ = p2 = CB = CD  B’  B và D  D’. Do đó, tâm đường tròn bàng tiếp góc C của tam giác CMN là điểm A.

Từ đó, MAN^=MAC^+NAC^=12(BAC^+DAC^)=45∘.

 

22 tháng 8 2021

Gọi chu vi tam giác CMN bằng p.

Tìm ý tưởng: p = BC + CD, hệ thức này gợi cho ta đến tính chất của đường tròn bàng tiếp (xem bài 2). Ở đây là đường tròn bàng tiếp góc C của ΔCMN.

Gọi B’, D’ lần lượt là các tiếp điểm của đường tròn bàng tiếp góc C của ΔCMN với đường kéo dài cạnh CM, CN.

Ta đã có, CB’ = CD’ = \frac{p}{2} = CB = CD \Rightarrow B’ \equiv B và D \equiv D’. Do đó, tâm đường tròn bàng tiếp góc C của tam giác CMN là điểm A.

Từ đó, \widehat{MAN}=\widehat{MAC}+\widehat{NAC}=\frac{1}{2}\left(\widehat{BAC}+\widehat{DAC}\right)={45}^\circ.