K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔADC và ΔAEB có

AD=AE

góc A chung

AC=AB

=>ΔADC=ΔAEB

b: Gọi giao của 3 đường trung trực trong ΔABC là O

=>OB=OC

Kẻ OK vuông góc BC, OK cắt DE tại M

=>OK là trung trực của BC

Xét ΔABC có AD/AB=AE/AC

nên DE//BC

=>OM vuông góc DE tạiM

Xét ΔOBD và ΔOCE có

OB=OC

góc OBD=góc OCE

BD=CE

=>ΔOBD=ΔOCE

=>OE=OD

=>OM là trung trực của DE

28 tháng 2 2018

Em tham khảo tại đây nhé.

Câu hỏi của Phạm Bá Gia Nhất - Toán lớp 7 - Học toán với OnlineMath

15 tháng 4 2021

Lười đánh máy thật sự:vvv

a) Xét ∆ABD và ∆AED:

AD: cạnh chung

AB=AE(gt)

\(\widehat{BAD}=\widehat{CAD}\) (AD là phân giác góc BAC)

=> ∆ABD=∆AED (c.g.c)

=> BD=DC

b) Theo câu a: ∆ABD=∆AED

=> \(\widehat{ABD}=\widehat{AED}\)

Ta có: \(\left\{{}\begin{matrix}\widehat{ABD}+\widehat{DBK}=180^o\\\widehat{AED}+\widehat{DEC}=180^o\end{matrix}\right.\)

\(\Rightarrow\widehat{DBK}=\widehat{DEC}\)

Xét ∆DBK và ∆DEC:

BD=ED(cm ở a)

\(\widehat{DBK}=\widehat{DEC}\left(cmt\right)\)

\(\widehat{BDK}=\widehat{EDC}\) ( 2 góc đối đỉnh)

=> ∆DBK=∆DEC (g.c.g)

c) Gọi giao điểm của AD và BE là I

Xét ∆BAI và ∆EAI:

AB=AE(gt)

\(\widehat{BAI}=\widehat{EAI}\left(gt\right)\)

AI: cạnh chung

=> ∆BAI=∆EAI (c.g.c)

=> \(\left\{{}\begin{matrix}BI=EI\left(1\right)\\\widehat{AIB}=\widehat{AIE}\end{matrix}\right.\)

Mà \(\widehat{AIB}+\widehat{AIE}=180^o\) (2 góc kề bù)

=> \(\widehat{AIB}=\widehat{AIE}=90^o\left(2\right)\)

Từ (1) và (2) suy ra AD là trung trực của BE.

a) Xét ΔABD và ΔAED có 

AB=AE(gt)

\(\widehat{BAD}=\widehat{EAD}\)(AD là tia phân giác của \(\widehat{BAE}\))

AE chung

Do đó: ΔABD=ΔAED(c-g-c)

Suy ra: BD=ED(hai cạnh tương ứng)

26 tháng 11 2016

Ta có hình vẽ:

A B C K D E

Xét Δ ABE và Δ ACD có:

AB = AC (gt)

A là góc chung

AE = AD (gt)

Do đó, Δ ABE = Δ ACD (c.g.c)

=> ABE = ACD (2 góc tương ứng)

và AEB = ADC (2 góc tương ứng)

Mà AEB + BEC = 180o (kề bù)

ADC + CDB = 180o (kề bù)

nên BEC = CDB

Có: AB = AC (gt)

AD = AE (gt)

=> AB - AD = AC - AE

=> BD = CE

Xét Δ KBD và Δ KCE có:

KBD = KCE (cmt)

BD = CE (cmt)

KDB = KEC (cmt)

Do đó, Δ KBD = Δ KCE (đpcm)

26 tháng 11 2016

Ta có hình vẽ:

A B C D E K Xét tam giác ABE và tam giác ACD có:

A: góc chung

AB = AC (GT)

AD = AE (GT)

=> tam giác ABE = tam giác ACD (c.g.c)

=> \(\widehat{B}\)=\(\widehat{C}\) (2 góc tương ứng) (1)

=> \(\widehat{ADC}\)=\(\widehat{AEB}\) (2 góc tương ứng) (*)

\(\widehat{ADC}\)+\(\widehat{CDB}\)=1800 (kề bù) (**)

\(\widehat{AEB}\)+\(\widehat{BEC}\)=1800 (kề bù) (***)

Từ (*),(**),(***) => \(\widehat{KDB}\)=\(\widehat{KEC}\) (2)

Ta có: AB = AC; AD = AE => DB=EC (3)

Từ (1);(2);(3) => tam giác KBD = tam giác KCE (đpcm)

26 tháng 8 2022

Bạn làm ny mik đi