Cho tam giác ABC có AB=AC. Trên các cạnh AB và AC lấy các điểm D và E sao cho BD=CE. Gọi K là giao điểm của BE và CD.
a) Chứng minh rằng tam giác ADC = tam giác AEB
b) Chứng minh ba đường trung trực của tam giác ABC và trung trực của DE cùng đi qua một điểm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em tham khảo tại đây nhé.
Câu hỏi của Phạm Bá Gia Nhất - Toán lớp 7 - Học toán với OnlineMath
Lười đánh máy thật sự:vvv
a) Xét ∆ABD và ∆AED:
AD: cạnh chung
AB=AE(gt)
\(\widehat{BAD}=\widehat{CAD}\) (AD là phân giác góc BAC)
=> ∆ABD=∆AED (c.g.c)
=> BD=DC
b) Theo câu a: ∆ABD=∆AED
=> \(\widehat{ABD}=\widehat{AED}\)
Ta có: \(\left\{{}\begin{matrix}\widehat{ABD}+\widehat{DBK}=180^o\\\widehat{AED}+\widehat{DEC}=180^o\end{matrix}\right.\)
\(\Rightarrow\widehat{DBK}=\widehat{DEC}\)
Xét ∆DBK và ∆DEC:
BD=ED(cm ở a)
\(\widehat{DBK}=\widehat{DEC}\left(cmt\right)\)
\(\widehat{BDK}=\widehat{EDC}\) ( 2 góc đối đỉnh)
=> ∆DBK=∆DEC (g.c.g)
c) Gọi giao điểm của AD và BE là I
Xét ∆BAI và ∆EAI:
AB=AE(gt)
\(\widehat{BAI}=\widehat{EAI}\left(gt\right)\)
AI: cạnh chung
=> ∆BAI=∆EAI (c.g.c)
=> \(\left\{{}\begin{matrix}BI=EI\left(1\right)\\\widehat{AIB}=\widehat{AIE}\end{matrix}\right.\)
Mà \(\widehat{AIB}+\widehat{AIE}=180^o\) (2 góc kề bù)
=> \(\widehat{AIB}=\widehat{AIE}=90^o\left(2\right)\)
Từ (1) và (2) suy ra AD là trung trực của BE.
a) Xét ΔABD và ΔAED có
AB=AE(gt)
\(\widehat{BAD}=\widehat{EAD}\)(AD là tia phân giác của \(\widehat{BAE}\))
AE chung
Do đó: ΔABD=ΔAED(c-g-c)
Suy ra: BD=ED(hai cạnh tương ứng)
Ta có hình vẽ:
Xét Δ ABE và Δ ACD có:
AB = AC (gt)
A là góc chung
AE = AD (gt)
Do đó, Δ ABE = Δ ACD (c.g.c)
=> ABE = ACD (2 góc tương ứng)
và AEB = ADC (2 góc tương ứng)
Mà AEB + BEC = 180o (kề bù)
ADC + CDB = 180o (kề bù)
nên BEC = CDB
Có: AB = AC (gt)
AD = AE (gt)
=> AB - AD = AC - AE
=> BD = CE
Xét Δ KBD và Δ KCE có:
KBD = KCE (cmt)
BD = CE (cmt)
KDB = KEC (cmt)
Do đó, Δ KBD = Δ KCE (đpcm)
Ta có hình vẽ:
Xét tam giác ABE và tam giác ACD có:
A: góc chung
AB = AC (GT)
AD = AE (GT)
=> tam giác ABE = tam giác ACD (c.g.c)
=> \(\widehat{B}\)=\(\widehat{C}\) (2 góc tương ứng) (1)
=> \(\widehat{ADC}\)=\(\widehat{AEB}\) (2 góc tương ứng) (*)
Mà \(\widehat{ADC}\)+\(\widehat{CDB}\)=1800 (kề bù) (**)
và \(\widehat{AEB}\)+\(\widehat{BEC}\)=1800 (kề bù) (***)
Từ (*),(**),(***) => \(\widehat{KDB}\)=\(\widehat{KEC}\) (2)
Ta có: AB = AC; AD = AE => DB=EC (3)
Từ (1);(2);(3) => tam giác KBD = tam giác KCE (đpcm)
a: Xét ΔADC và ΔAEB có
AD=AE
góc A chung
AC=AB
=>ΔADC=ΔAEB
b: Gọi giao của 3 đường trung trực trong ΔABC là O
=>OB=OC
Kẻ OK vuông góc BC, OK cắt DE tại M
=>OK là trung trực của BC
Xét ΔABC có AD/AB=AE/AC
nên DE//BC
=>OM vuông góc DE tạiM
Xét ΔOBD và ΔOCE có
OB=OC
góc OBD=góc OCE
BD=CE
=>ΔOBD=ΔOCE
=>OE=OD
=>OM là trung trực của DE