tìm 1 nghiệm của đa thức sau :
a f(x)=x^3-x^2+x-1
b g(x)=11x^3+5x^2+4x+10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(G\left(x\right)=11x^3+5x^2+4x+10=0\)
\(\left(x+1\right)\left(11x^2-6x+10\right)=0\)
TH1 : \(x=-1\)(tm)
TH2 : \(11x^2-6x+10=0\)
\(\left(-6\right)^2-4.10.11=36-440< 0\)(ktm)
Vậy đa thức có nghiệm x = -1
G(x)=11x3+5x2+4x+10
Để G(x)=0 => 11x3+5x2+4x+10=0
(x+1)(11x2-6x+10)=0
* x+1=0 => x=-1
* 11x2-6x+10=0 => 6x(5x-1)+10=0
6x(5x-1)=-10
+) 6x=0 => x=0
+) 5x-1=0 => x=1/5
Vậy...........................................................
ko chắc cho lắm
Câu 1: a) x = 1 là nghiệm của đa thức f(x)
b) x = -1 là nghiệm của đa thức g(x)
c) x = 1 là nghiệm của đa thức h(x)
Câu 2: Số 1 là ngiệm của đa thức f(x)
a)\(f\left(x\right)=2x^2-x-3+5=\left(x+1\right)\left(2x-3\right)+5\)
Để \(f\left(x\right)⋮g\left(x\right)\Leftrightarrow\left(x+1\right)\left(2x-3\right)+5⋮\left(x+1\right)\)
\(\Leftrightarrow5⋮\left(x+1\right)\)
mà \(x+1\in Z\Rightarrow x+1\in U\left(5\right)=\left\{-1;1;5;-5\right\}\)
\(\Leftrightarrow x\in\left\{-2;0;4;-6\right\}\)
Vậy...
b) \(f\left(x\right)=3x^2-4x+6=\left(3x^2-4x+1\right)+5=\left(3x-1\right)\left(x-1\right)+5\)
Để \(f\left(x\right)⋮g\left(x\right)\Leftrightarrow\left(3x-1\right)\left(x-1\right)+5⋮\left(3x-1\right)\)
\(\Leftrightarrow5⋮\left(3x-1\right)\) mà \(3x-1\in Z\Rightarrow3x-1\in U\left(5\right)=\left\{-1;1;5;-5\right\}\)
\(\Leftrightarrow x\in\left\{0;\dfrac{2}{3};2;-\dfrac{4}{3}\right\}\) mà x nguyên\(\Rightarrow x\in\left\{0;2\right\}\)
Vậy...
c)\(f\left(x\right)=\left(-2x^3-7x^2-5x+2\right)+3\)\(=\left(-2x^3-4x^2-3x^2-6x+x+2\right)+3\)\(=\left[-2x^2\left(x+2\right)-3x\left(x+2\right)+\left(x+2\right)\right]+3\)
\(=\left(x+2\right)\left(-2x^2-3x+1\right)+3\)
Làm tương tự như trên \(\Rightarrow x+2\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
\(\Leftrightarrow x\in\left\{-5;-3;-1;1\right\}\)
Vậy...
d)\(f\left(x\right)=x^3-3x^2-4x+3=x\left(x^2-3x-4\right)+3=x\left(x+1\right)\left(x-4\right)+3\)
Làm tương tự như trên \(\Rightarrow x+1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
\(\Rightarrow x\in\left\{-4;-2;0;2\right\}\)
Vậy...
a) Ta có: \(x^3-x^2+x-1=0\)
\(\Rightarrow x^2\left(x-1\right)+\left(x-1\right)=0\)
\(\Rightarrow\left(x^2+1\right)\left(x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x^2+1=0\\x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x^2=-1\left(loại\right)\\x=1\end{matrix}\right.\)
Vậy x = 1 là nghiệm của đa thức f(x)
b, c: @Ace Legona
a)\(f\left(x\right)=x^3-x^2+x-1\)
Cho \(f\left(x\right)=0\Rightarrow x^3-x^2+x-1=0\)
\(\Rightarrow x^2\left(x-1\right)+\left(x-1\right)=0\)
\(\Rightarrow\left(x-1\right)\left(x^2+1\right)=0\)
Dễ thấy: \(x^2+1\ge1>0\forall x\) ( vô nghiệm )
\(\Rightarrow x-1=0\Rightarrow x=1\)
b)\(g\left(x\right)=11x^3+5x^2+4x+10\)
Cho \(g\left(x\right)=0\Rightarrow11x^3+5x^2+4x+10=0\)
\(\Rightarrow11x^3-6x^2+10x+11x^2-6x+10=0\)
\(\Rightarrow x\left(11x^2-6x+10\right)+\left(11x^2-6x+10\right)=0\)
\(\Rightarrow\left(x+1\right)\left(11x^2-6x+10\right)=0\)
Dễ thấy:
\(11x^2-6x+10=11\left(x-\dfrac{3}{11}\right)^2+\dfrac{101}{11}\ge\dfrac{101}{11}>0\forall x\) (vô nghiệm)
\(\Rightarrow x+1=0\Rightarrow x=-1\)
c)\(h\left(x\right)=-17x^3+8x^2-3x+12\)
Cho \(h\left(x\right)=0\Rightarrow-17x^3+8x^2-3x+12=0\)
\(\Rightarrow17x^2+9x+12-17x^3-9x^2-12x=0\)
\(\Rightarrow\left(17x^2+9x+12\right)-x\left(17x^2+9x+12\right)=0\)
\(\Rightarrow\left(1-x\right)\left(17x^2+9x+12\right)=0\)
Dễ thấy:
\(17x^2+9x+12=17\left(x+\dfrac{9}{34}\right)^2+\dfrac{735}{68}\ge\dfrac{735}{68}>0\forall x\)(vô nghiệm)
\(\Rightarrow1-x=0\Rightarrow x=1\)
a) x3-x2+x-1=0
=>(x3-x2)+(x-1)=0
=>x2(x-1)+(x-1)=0
(x-1)(x2+1)=0
Ta có \(x^2+1>0\) ( vì \(x^2\ge0\) )
=>x-1=0
x=1
Vậy x=1 là nghiệm của f(x)
b)11x3+5x2+4x+10=0
=>(10x3+10)+(x3+x2)+(4x2+4x)=0
=>10(x3+1)+x2(x+1)+4x(x+1)=0
10(x+1)(x2-x+1)+x2(x+1)+4x(x+1)=0
(x+1)[10(x2-x+1)+x2+4x]=0
(x+1)(11x2-6x+10)=0
(x+1)[(9x2-2.3x+1)+9]=0
(x+1)[(3x-1)2+2x2+9]=0
=>x+1=0
x=-1
Vậy -1 là nghiệm của y(x)
c)-17x3+8x2-3x+12=0