cho hình thang abcd đáy ab=4/5 cd.trên cạnh ad lấy điểm n sao cho am=2md.trên cạnh bc lấy điểm n sao cho bn=2/3 nc.tính tỉ số diện tích của tam giác abm và cdn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(AM=2MD\Rightarrow\dfrac{AM}{AD}=\dfrac{2}{3}\)
\(BN=\dfrac{2}{3}NC\Rightarrow\dfrac{NC}{BC}=\dfrac{3}{5}\)
Hai tg ABD và tg BCD có đường cao từ D->AB = đường cao từ B->CD nên
\(\dfrac{S_{ABD}}{S_{BCD}}=\dfrac{AB}{CD}=\dfrac{4}{5}\)
\(\Rightarrow S_{ABD}=\dfrac{4}{9}xS_{ABCD}\) và \(S_{BCD}=\dfrac{5}{9}xS_{ABCD}\)
Hai tg ABM và tg ABD có chung đường cao từ B->AD nên
\(\dfrac{S_{ABM}}{S_{ABD}}=\dfrac{AM}{AD}=\dfrac{2}{3}\Rightarrow S_{ABM}=\dfrac{2}{3}xS_{ABD}=\dfrac{2}{3}x\dfrac{4}{9}xS_{ABCD}=\dfrac{8}{27}xS_{ABCD}\)
Hai tg CND và tg BCD có chung đường cao từ D->BC nên
\(\dfrac{S_{CND}}{S_{BCD}}=\dfrac{CN}{BC}=\dfrac{3}{5}\Rightarrow S_{CND}=\dfrac{3}{5}xS_{BCD}=\dfrac{3}{5}x\dfrac{5}{9}xS_{ABCD}=\dfrac{1}{3}xS_{ABCD}\)
\(\Rightarrow\dfrac{S_{ABM}}{S_{CND}}=\dfrac{\dfrac{8}{27}xS_{ABCD}}{\dfrac{1}{3}xS_{ABCD}}=\dfrac{8}{9}\)
a, Hai tam giác có chung đáy CD ,Đường cao tam giác BCD lớn gấp 3 lần đường cao tam giác DMC
do vậy diện tích tam giác BCD lớn gấp 3 lần tam giác DMC
b, cách tính dt tam giác ABM = ( 3 x 2 ) : 2 = 3 thì cách tính dt hình thang = ( 3 + 4 ) x 3 : 2 = 10,5
qua đó ta thấy dt hình thang hơn dt tam gics ABM số lần là
10,5 : 3 = 3,5
vậy dt hình thang là
8 cm2 x 3,5 = 28 cm2
đúng 100% nhé bạn
chúc bạn học tốt
Xét tg ABD và tg BCD có đường cao từ D->AB = đường cao từ B->CD nên
\(\frac{S_{ABD}}{S_{BCD}}=\frac{AB}{CD}=\frac{4}{5}\)
\(S_{ABCD}=S_{ABD}+S_{BCD}\)
Chia \(S_{ABD}\) thành 4 phần bằng nhau thì \(S_{BCD}\) là 5 phần như thế
\(\Rightarrow\frac{S_{ABD}}{S_{ABCD}}=\frac{S_{ABD}}{S_{ABD}+S_{BCD}}=\frac{4}{4+5}=\frac{4}{9}\Rightarrow S_{ABD}=\frac{4xS_{ABCD}}{9}\)
\(\Rightarrow\frac{S_{BCD}}{S_{ABCD}}=\frac{5}{9}\Rightarrow S_{BCD}=\frac{5xS_{ABCD}}{9}\)
Ta có \(\frac{AM}{MD}=2\Rightarrow\frac{AM}{AD}=\frac{2}{3};\frac{NC}{BN}=\frac{3}{2}\Rightarrow\frac{NC}{BC}=\frac{3}{5}\)
Xét tg ABM và tg ABD có chung đường cao từ B->AD nên
\(\frac{S_{ABM}}{S_{ABD}}=\frac{AM}{AD}=\frac{2}{3}\Rightarrow S_{ABM}=\frac{2xS_{ABD}}{3}=\frac{2}{3}x\frac{4xS_{ABCD}}{9}=\frac{8xS_{ABCD}}{27}\)
Xét tg CDN và tg BCD có chung đường cao tư D->BC nên
\(\frac{S_{CDN}}{S_{BCD}}=\frac{CN}{BC}=\frac{3}{5}\Rightarrow S_{CDN}=\frac{3}{5}xS_{BCD}=\frac{3}{5}x\frac{5xS_{ABCD}}{9}=\frac{S_{ABCD}}{3}\)
Ta có
\(S_{BMDC}=S_{ABCD}-S_{ABM}=S_{ABCD}-\frac{8xS_{ABCD}}{27}=\frac{19xS_{ABCD}}{27}\)
\(S_{ABND}=S_{ABCD}-S_{CDN}=S_{ABCD}-\frac{S_{ABCD}}{3}=\frac{2xS_{ABCD}}{3}\)
\(\Rightarrow S_{BMDC}-S_{ABND}=\frac{19xS_{BCD}}{27}-\frac{2xS_{ABCD}}{3}=\frac{S_{ABCD}}{27}=72\Rightarrow S_{ABCD}=27x72=1944cm^2\)
S ABD/S BDC=AB/CD=4/5
S ABM=2/3*S ABD
S CDN=3/5*S BCD
=>S ABM/S CDN=(2/3:3/5)*4/5=2/3*5/3*4/5=2/3*4/3=8/9