K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2022

Phương trình hoành độ của (d) và (P) : 

\(x^2=\left(2m-1\right)x+4\left(1\right)\)

\(\Leftrightarrow x^2-\left(2m-1\right)x-4=0\)

\(\Delta=\left(2m-1\right)^2+16>0\) ⇒ Phương trình có hai nghiệm phân biệt với mọi m.

- A và B cách Oy nên \(x_A,x_B\) trái dấu ⇒ \(x_Ax_B< 0\Leftrightarrow P=\dfrac{c}{a}=-4< 0\)

⇒ Để thỏa đề bài, \(x_A+x_B=0\).

Theo định lí Vi-ét

 \(x_A+x_B=-\dfrac{b}{a}=2m-1=0\)

\(\Leftrightarrow m=\dfrac{1}{2}\)

Vậy : (d) cắt (P) tại 2 điểm phân biệt với khoảng cách từ A và B đến trục Oy bằng nhau khi \(m=\dfrac{1}{2}\)

 

15 tháng 11 2020

Phương trình hoành độ giao điểm của (P) và (d):

x2 + 2x -m2 + 1 = 0 

Để thỏa mãn yêu cầu bài toán thì pt này phải có hai nghiêm phân biệt xD và xE và xD + xE = 0

Áp dụng định lý Vi-et thì xD +xE = -2 \(\Rightarrow\)\(\in\varnothing\)

1: Tọa độ A là:

y=0 và 4x+m-3=0

=>x=(-m+3)/4 và y=0

=>OA=|m-3|/4

Tọa độ B là:

x=0 và y=m-3

=>OB=|m-3|

Theo đề, ta có: 1/2*(m-3)^2/4=9

=>(m-3)^2/4=18

=>(m-3)^2=72

=>\(m=\pm6\sqrt{2}+3\)

2:

PTHĐGĐ là:

x^2-4x-m+3=0

Δ=(-4)^2-4*(-m+3)=16+4m-12=4m+4

Để (P) cắt (d) tại hai điểm phân biệt thì 4m+4>0

=>m>-1

(4-x1)(x2-1)=2

=>4x2-4-x1x2+1=2

=>x2(x1+x2)-3-(-m+3)=2

=>x2*4-3+m-3=2

=>x2*4=2-m+6=8-m

=>x2=2-1/2m

=>x1=4-2+1/2m=1/2m+2

x1*x2=-m+3

=>-m+3=(1/2m+2)(2-1/2m)=4-1/4m^2

=>-m+3-4+1/4m^2=0

=>1/4m^2-m-1=0

=>m^2-4m-4=0

=>\(m=2\pm2\sqrt{2}\)

Phương trình hoành độ giao điểm là:

\(x^2-mx+2m-4=0\)

\(\Delta=\left(-m\right)^2-4\left(2m-4\right)\)

\(=m^2-8m+16=\left(m-4\right)^2\)

Để (P) cắt (d) tại hai điểm phân biệt thì m-4<>0

hay m<>4

Ta có: \(x_1^2+x_2^2\)

\(=\left(x_1+x_2\right)^2-2x_1x_2\)

\(=m^2-2\left(2m-4\right)\)

\(=m^2-4m+8\)

\(=\left(m-2\right)^2+4\ge4\forall x\)

Dấu '=' xảy ra khi m=2

AH
Akai Haruma
Giáo viên
31 tháng 5 2023

Lời giải:

PT hoành độ giao điểm:

$x^2-2mx+2m-1=0(*)$

Để $(p)$ và $(d)$ cắt nhau tại 2 điểm phân biệt thì pt $(*)$ có 2 nghiệm phân biệt 

$\Leftrightarrow \Delta'=m^2-(2m-1)>0\Leftrightarrow (m-1)^2>0\Leftrightarrow m\neq 1$

Áp dụng định lý Viet:

$x_1+x_2=2m$

$x_1x_2=2m-1$

$(P)$ và $(d)$ cắt nhau tại 2 điểm nằm khác phía trục tung

$\Leftrightarrow x_1x_2<0$

$\Leftrightarrow 2m-1<0\Leftrightarrow m< \frac{1}{2}$

Khoảng cách từ 2 giao điểm đến trục hoành là:

$|y_1|+|y_2|=|x_1^2|+|x_2^2|=5$

$\Leftrightarrow x_1^2+x_2^2=5$

$\Leftrightarrow (x_1+x_2)^2-2x_1x_2=5$

$\Leftrightarrow (2m)^2-2(2m-1)=5$
$\Leftrightarrow 4m^2-4m-3=0$

$m=\frac{-1}{2}$ hoặc $m=\frac{3}{2}$

Vì $m\neq 1$ và $m< \frac{1}{2}$ nên $m=\frac{-1}{2}$

 

 

7 tháng 11 2017

Bài 3 làm sao v ạ?

a: Phương trình hoành độ giao điểm là: \(x^2-mx+m-1=0\)

\(\Delta=\left(-m\right)^2-4\cdot\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2\)

Để (P) cắt (d) tại hai điểm phân biệt thì m-2<>0

hay m<>2

b: \(\left|x_A-x_B\right|< 3\)

\(\Leftrightarrow\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}< 3\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2< 9\)

\(\Leftrightarrow m^2-4\left(m-1\right)< 9\)

\(\Leftrightarrow\left(m-2\right)^2-3< 0\)

=>(m+1)(m-5)<0

=>-1<m<5