Phân tích đa thức thành nhân tử:
a) (x+2)² + 2(x²-4) + (x-2)²
b) x² - x + ¼
c) (x+y)³ - (x-y)³
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. Không phân tích được nữa
b. $x^2(x-y)+4(y-x)=x^2(x-y)-4(x-y)=(x-y)(x^2-4)=(x-y)(x-2)(x+2)$
c. $x^3+2x^2y+xy^2-4x=x(x^2+2xy+y^2-4)$
$=x[(x^2+2xy+y^2)-4]=x[(x+y)^2-2^2]=x(x+y-2)(x+y+2)$
a.
\(=\left(x+1\right)^3-\left(3z\right)^3\)
\(=\left(x+1+3z\right)\left[\left(x+1\right)^2+3z\left(x+1\right)+9z^2\right]\)
\(=\left(x+3z+1\right)\left(x^2+2x+1+3zx+3z+9z^2\right)\)
b.
\(=\left(x-y\right)^2-z\left(x-y\right)\)
\(=\left(x-y\right)\left(x-y-z\right)\)
c.
\(=x^4-1+4x^2-4\)
\(=\left(x^2-1\right)\left(x^2+1\right)+4\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(x^2+5\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x^2+5\right)\)
a) Ta có: \(x^3+3x^2+3x+1-27z^3\)
\(=\left(x+1\right)^3-\left(3z\right)^3\)
\(=\left(x+1-3z\right)\left(x^2+2x+1+3xz+3z+9z^2\right)\)
b) Ta có: \(x^2-2xy+y^2-zx+yz\)
\(=\left(x-y\right)^2-z\left(x-y\right)\)
\(=\left(x-y\right)\left(x-y-z\right)\)
c) Ta có: \(x^4+4x^2-5\)
\(=x^4+4x^2+4-9\)
\(=\left(x^2+2\right)^2-3^2\)
\(=\left(x^2-1\right)\left(x^2+5\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x^2+5\right)\)
1A:
a: \(x^3+2x=x\left(x^2+2\right)\)
b: \(3x-6y=3\left(x-2y\right)\)
c: \(5\left(x+3y\right)-15x\left(x+3y\right)\)
\(=5\left(x+3y\right)\left(1-3x\right)\)
d: \(3\left(x-y\right)-5x\left(y-x\right)\)
\(=3\left(x-y\right)+5x\left(x-y\right)\)
\(=\left(x-y\right)\left(5x+3\right)\)
1A. a. x(x2+2)
b. 3(x-2y)
c. 5(x+3y)(1-3x)
d. (x-y) (3-5x)
1B. a. 2x(2x-3)
b.xy(x2-2xy+5)
c. 2x(x+1)(x+2)
d. 2x(y-1)+2y(y-1)=2(y-1)(x-y)
a: =(x-z)(y+8)
b; =x^2-2x-3x+6
=(x-2)(x-3)
c: =x^4+10x^2-x^2-10
=(x^2+10)(x^2-1)
=(x^2+10)(x-1)(x+1)
`a)(x+2)^2+2(x^2-4)+(x-2)^2`
`=(x+2)^2+2(x-2)(x+2)+(x-2)^2`
`=(x+2+x-2)^2=(2x)^2=4x^2`
`b)x^2-x+1/4`
`=x^2-2.x .1/2+1/4=(x-1/2)^2`
`c)(x+y)^3-(x-y)^3`
`=(x+y-x+y)[(x+y)^2+(x+y)(x-y)+(x-y)^2]`
`=2y(x^2+2xy+y^2+x^2-y^2+x^2-2xy+y^2)`
`=2y(3x^2+y^2)`
a) \(\left(x+2\right)^2+2\left(x^2-4\right)+\left(x-2\right)^2\)
\(=\left(x+2\right)^2+2\left(x+2\right)\left(x-2\right)+\left(x-2\right)^2\)
\(=\left(x+2+x-2\right)^2=\left(2x\right)^2=4x^2\)
b) \(x^2-x+\dfrac{1}{4}=\left(x-\dfrac{1}{2}\right)^2\)
c) \(\left(x+y\right)^3-\left(x-y\right)^3=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(x^3-3x^2y+3xy^2-y^3\right)=6x^2y+2y^3=2y\left(3x^2+y^2\right)\)