Cho hình chữ nhật ABCD có AB=20 cm, AD=15 cm. Vẽ AH vuông góc với BD thuộc B
a/ Tính DB và AH
b/Chứng minh tam giác ADB đồng dạng tam giác HDA
c/Vẽ HM vuông góc AD-chứng minh tam giác AMN đồng dạng tam giác ABD
Mong có đáp án sớm mai mik thi rồi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔHAD và ΔABD ta có:
\(\widehat{D}\) chung
\(\widehat{DAB}=\widehat{DHA}=90^0\)
⇒ΔHAD ∼ ΔABD (g.g)(1)
b) Xét ΔHBA và ΔABD ta có:
\(\widehat{B}\) chung
\(\widehat{AHB}=\widehat{DAB}=90^0\)
→ΔHBA ∼ ΔABD (g.g)(2)
Từ (1) và (2) →ΔHAD∼ΔHBA
\(\rightarrow\dfrac{AD}{DH}=\dfrac{HB}{AD}\\ \rightarrow AD.AD=DH.HB\\\Rightarrow AD^2=DH.HB\)
c) Xét ΔABD vuông tại A ta có:
\(BD^2=AB^2+AD^2\)
\(=8^2+6^2\)
\(=100\)
\(\Rightarrow BD=\sqrt{100}=10\left(cm\right)\)
Vì ΔΔHAD ∼ ΔABD (cmt)
\(\rightarrow\dfrac{AD}{DH}=\dfrac{AB}{AH}=\dfrac{BD}{AD}hay\dfrac{6}{DH}=\dfrac{8}{AH}=\dfrac{10}{6}=\dfrac{5}{3}\\ \Rightarrow DH=\dfrac{6.3}{5}=3,6\left(cm\right)\\ \Rightarrow AH=\dfrac{8.3}{5}=4,8\left(cm\right)\)
a: Xét ΔHAD vuông tại H và ΔABD vuông tại A có
góc HDA chung
=>ΔHAD đồng dạng với ΔABD
b: ΔABD vuông tại A có AH là đường cao
nên DA^2=DH*DB
c: \(BD=\sqrt{8^2+6^2}=10\left(cm\right)\)
AH=6*8/10=4,8cm
DH=6^2/10=3,6cm
a) Áp dụng định lí Pytago vào ΔABD vuông tại A, ta được:
\(BD^2=AB^2+AD^2\)
\(\Leftrightarrow BD^2=6^2+8^2=100\)
hay BD=10(cm)
b) Xét ΔDHA vuông tại H và ΔDAB vuông tại A có
\(\widehat{ADH}\) chung
Do đó: ΔDHA\(\sim\)ΔDAB(g-g)
Bài 2:
a) Xét tam giác BDC vuông tại C có:
\(DC^2+BC^2=DB^2\)
\(\Rightarrow BD=\sqrt{DC^2+BC^2}\)( DC=AB)
\(\Rightarrow BD=10\left(cm\right)\)
b) tam giác BDA nhé
Xét tamg giác ADH và tam giác BDA có:
\(\hept{\begin{cases}\widehat{D1}chung\\\widehat{AHD}=\widehat{BAD}=90^0\end{cases}\Rightarrow\Delta ADH~\Delta BDA\left(g.g\right)}\)
c) Vì tam giác ADH đồng dạng với tam giác BDA (cmt)
\(\Rightarrow\frac{AD}{DH}=\frac{BD}{DA}\)( các cạnh t,.ứng tỉ lệ )
\(\Rightarrow AD^2=BD.DH\)
d) Xét tan giác AHB và tam giác BCD có:
\(\hept{\begin{cases}\widehat{AHB}=\widehat{BCD}=90^0\\\widehat{ABH}=\widehat{DBC}=45^0\end{cases}\Rightarrow\Delta AHB~\Delta BCD\left(g.g\right)}\)
( góc= 45 độ bạn tự cm nhé )
e) \(S_{ABD}=\frac{1}{2}AD.AB=\frac{1}{2}AH.BD\)
\(\Rightarrow AD.AB=AH.BD\)
\(\Rightarrow AH=4,8\left(cm\right)\)
Dùng Py-ta-go làm nốt tính DH
Bài 1
a) Áp dụng định lý Pytago vào tam giác ABC vuông tại A ta có:
\(AB^2+AC^2=BC^2\)
Thay AB=3cm, AC=4cm
\(\Rightarrow3^2+4^2=BC^2\)
<=> 9+16=BC2
<=> 25=BC2
<=> BC=5cm (BC>0)
a: BC=căn 6^2+8^2=10cm
b: Xét ΔBAC vuông tại A và ΔBHA vuông tại H có
góc B chung
=>ΔBAC đồng dạng với ΔBHA
c: BA/BH=BC/BA
=>BA^2=BH*BC
a: Xét ΔADH vuông tại H và ΔABH vuông tại H có
góc HAD=góc HBA
Do đó: ΔADH đồng dạng với ΔBAH
Suy ra: HA/HB=HD/HA
hay \(HA^2=HD\cdot HB\)
b: \(BD=9+16=25cm\)
\(AD=\sqrt{9\cdot25}=15\left(cm\right)\)
AB=20cm
c: Xét ΔAHB có
K là trung điểm của AH
M là trung điểm của HB
Do đó: KM là đường trung bình
=>KM//AB và KM=AB/2
=>KM//DN và KM=DN
=>DKMN là hình bình hành
Giải
a) Xét\(\Delta AHB\)và\(\Delta BCD\)có:
\(\widehat{AHB}=\widehat{BCD}=90^o\)
\(\widehat{ABH}=\widehat{BDC}\) (so le trong)
=>\(\Delta AHB~\Delta BCD\) (g.g)
b) Xét\(\Delta AHD\)và\(\Delta AHB\)có:
\(\widehat{AHD}=\widehat{BHA}=90^o\)
\(\widehat{DAH}=\widehat{ABH}\)(cùng phụ\(\widehat{HAB}\))
=>\(\Delta AHD~\Delta AHB\) (g.g)
Mà ở cmt ta thấy\(\Delta AHB~\Delta BCD\)
Suy ra\(\Delta AHD~\Delta DCB\) (tính chất bắc cầu)
c) Áp dụng định lí Pi-ta-go vào tam giác vuông BCD có:
\(BD^2=BC^2+DC^2\)
\(BD^2=6^2+8^2\)
\(BD^2=36+64\)
\(BD=\sqrt{100}=10\left(cm,BD>0\right)\)
Xét tam giác vuông ABD có:
\(AH=\frac{AB.AD}{BD}=\frac{48}{10}=4,8\left(cm\right)\)
Áp dụng tính tính chất Pi-ta-go vào tam giác vuông AHB có:
\(AB^2=AH^2+HB^2\)
\(8^2=4,8^2+HB^2\)
\(HB^2=8^2-4,8^2\)
\(HB^2=40,96\)
\(HB=\sqrt{40,96}=6,4\left(cm,HB>0\right)\)
=> \(HD=BD-HB=10-6,4=3,6\left(cm\right)\)
Còn HC bn tự tính nhé!
#hoktot<3#
a: \(DB=\sqrt{20^2+15^2}=25\left(cm\right)\)
\(AH=\dfrac{AB\cdot AD}{BD}=12\left(cm\right)\)
b: Xét ΔADB vuông tại A và ΔHDA vuông tại H có
góc ADB chung
Do đó: ΔADB\(\sim\)ΔHDA
cho mình xin vẽ hình với chính xác câu b/c/ được k cậu :<