K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(DB=\sqrt{20^2+15^2}=25\left(cm\right)\)

\(AH=\dfrac{AB\cdot AD}{BD}=12\left(cm\right)\)

b: Xét ΔADB vuông tại A và ΔHDA vuông tại H có

góc ADB chung

Do đó: ΔADB\(\sim\)ΔHDA

23 tháng 5 2022

cho mình xin vẽ hình với chính xác câu b/c/ được k cậu :<khocroi

5 tháng 5 2023

a) Xét ΔHAD và ΔABD ta có:

\(\widehat{D}\) chung

\(\widehat{DAB}=\widehat{DHA}=90^0\)

⇒ΔHAD ∼ ΔABD (g.g)(1)

b) Xét ΔHBA và ΔABD ta có:

\(\widehat{B}\) chung

\(\widehat{AHB}=\widehat{DAB}=90^0\)

→ΔHBA ∼ ΔABD (g.g)(2)

Từ (1) và (2) →ΔHAD∼ΔHBA

\(\rightarrow\dfrac{AD}{DH}=\dfrac{HB}{AD}\\ \rightarrow AD.AD=DH.HB\\\Rightarrow AD^2=DH.HB\)

c) Xét ΔABD vuông tại A ta có:

\(BD^2=AB^2+AD^2\)

         \(=8^2+6^2\)

         \(=100\)

\(\Rightarrow BD=\sqrt{100}=10\left(cm\right)\)

Vì ΔΔHAD ∼ ΔABD (cmt)

\(\rightarrow\dfrac{AD}{DH}=\dfrac{AB}{AH}=\dfrac{BD}{AD}hay\dfrac{6}{DH}=\dfrac{8}{AH}=\dfrac{10}{6}=\dfrac{5}{3}\\ \Rightarrow DH=\dfrac{6.3}{5}=3,6\left(cm\right)\\ \Rightarrow AH=\dfrac{8.3}{5}=4,8\left(cm\right)\)

5 tháng 5 2023

Hình vẽ:

H 6cm D C A B 8cm

a: Xét ΔHAD vuông tại H và ΔABD vuông tại A có

góc HDA chung

=>ΔHAD đồng dạng với ΔABD

b: ΔABD vuông tại A có AH là đường cao

nên DA^2=DH*DB

c: \(BD=\sqrt{8^2+6^2}=10\left(cm\right)\)

AH=6*8/10=4,8cm

DH=6^2/10=3,6cm

a) Áp dụng định lí Pytago vào ΔABD vuông tại A, ta được:

\(BD^2=AB^2+AD^2\)

\(\Leftrightarrow BD^2=6^2+8^2=100\)

hay BD=10(cm)

b) Xét ΔDHA vuông tại H và ΔDAB vuông tại A có 

\(\widehat{ADH}\) chung

Do đó: ΔDHA\(\sim\)ΔDAB(g-g)

12 tháng 3 2020

Bài 2:

A B C D H 1

a) Xét tam giác BDC vuông tại C có:

\(DC^2+BC^2=DB^2\)

\(\Rightarrow BD=\sqrt{DC^2+BC^2}\)( DC=AB)

\(\Rightarrow BD=10\left(cm\right)\)

b) tam giác BDA nhé

Xét tamg giác ADH và tam giác BDA có:

\(\hept{\begin{cases}\widehat{D1}chung\\\widehat{AHD}=\widehat{BAD}=90^0\end{cases}\Rightarrow\Delta ADH~\Delta BDA\left(g.g\right)}\)

c) Vì tam giác ADH đồng dạng với tam giác BDA (cmt)

\(\Rightarrow\frac{AD}{DH}=\frac{BD}{DA}\)( các cạnh t,.ứng tỉ lệ )

\(\Rightarrow AD^2=BD.DH\)

d) Xét tan giác AHB và tam giác BCD có:

\(\hept{\begin{cases}\widehat{AHB}=\widehat{BCD}=90^0\\\widehat{ABH}=\widehat{DBC}=45^0\end{cases}\Rightarrow\Delta AHB~\Delta BCD\left(g.g\right)}\)

( góc= 45 độ bạn tự cm nhé )

e) \(S_{ABD}=\frac{1}{2}AD.AB=\frac{1}{2}AH.BD\)

\(\Rightarrow AD.AB=AH.BD\)

\(\Rightarrow AH=4,8\left(cm\right)\)

Dùng Py-ta-go làm nốt tính DH
 

12 tháng 3 2020

Bài 1

A B C H I D

a) Áp dụng định lý Pytago vào tam giác ABC vuông tại A ta có:

\(AB^2+AC^2=BC^2\)

Thay AB=3cm, AC=4cm

\(\Rightarrow3^2+4^2=BC^2\)

<=> 9+16=BC2

<=> 25=BC2

<=> BC=5cm (BC>0)

a: BC=căn 6^2+8^2=10cm

b: Xét ΔBAC vuông tại A và ΔBHA vuông tại H có

góc B chung

=>ΔBAC đồng dạng với ΔBHA

c: BA/BH=BC/BA

=>BA^2=BH*BC

a: Xét ΔADH vuông tại H và ΔABH vuông tại H có

góc HAD=góc HBA

Do đó: ΔADH đồng dạng với ΔBAH

Suy ra: HA/HB=HD/HA

hay \(HA^2=HD\cdot HB\)

b: \(BD=9+16=25cm\)

\(AD=\sqrt{9\cdot25}=15\left(cm\right)\)

AB=20cm

c: Xét ΔAHB có

K là trung điểm của AH

M là trung điểm của HB

Do đó: KM là đường trung bình

=>KM//AB và KM=AB/2

=>KM//DN và KM=DN

=>DKMN là hình bình hành

5 tháng 6 2020

A B C D H 8cm 6cm

                      Giải

a) Xét\(\Delta AHB\)\(\Delta BCD\)có:

        \(\widehat{AHB}=\widehat{BCD}=90^o\)

       \(\widehat{ABH}=\widehat{BDC}\) (so le trong)

    =>\(\Delta AHB~\Delta BCD\) (g.g)

b) Xét\(\Delta AHD\)\(\Delta AHB\)có:

        \(\widehat{AHD}=\widehat{BHA}=90^o\)

        \(\widehat{DAH}=\widehat{ABH}\)(cùng phụ\(\widehat{HAB}\))

 =>\(\Delta AHD~\Delta AHB\) (g.g)

Mà ở cmt ta thấy\(\Delta AHB~\Delta BCD\)

Suy ra\(\Delta AHD~\Delta DCB\) (tính chất bắc cầu)

c) Áp dụng định lí Pi-ta-go vào tam giác vuông BCD có:

            \(BD^2=BC^2+DC^2\)

            \(BD^2=6^2+8^2\)   

           \(BD^2=36+64\)

           \(BD=\sqrt{100}=10\left(cm,BD>0\right)\)

  Xét tam giác vuông ABD có:

     \(AH=\frac{AB.AD}{BD}=\frac{48}{10}=4,8\left(cm\right)\)

 Áp dụng tính tính chất Pi-ta-go vào tam giác vuông AHB có:

        \(AB^2=AH^2+HB^2\)

        \(8^2=4,8^2+HB^2\)

        \(HB^2=8^2-4,8^2\)

        \(HB^2=40,96\)

        \(HB=\sqrt{40,96}=6,4\left(cm,HB>0\right)\)

=> \(HD=BD-HB=10-6,4=3,6\left(cm\right)\)

Còn HC bn tự tính nhé!

 #hoktot<3#