K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2016

bai de the nay ma cung phai hoi

8 tháng 11 2016

de p ko pt ms hoi 

\(=\dfrac{a\sqrt{a}-3-2\left(a-6\sqrt{a}+9\right)-a-4\sqrt{a}-3}{\left(\sqrt{a}-3\right)\left(\sqrt{a}+1\right)}\cdot\dfrac{a-1}{a+8}\)

\(=\dfrac{a\sqrt{a}-a-4\sqrt{a}-6-2a+12\sqrt{a}-18}{\left(\sqrt{a}-3\right)}\cdot\dfrac{\sqrt{a}-1}{a+8}\)

\(=\dfrac{a\sqrt{a}-3a+8\sqrt{a}-24}{\left(\sqrt{a}-3\right)}\cdot\dfrac{\sqrt{a}-1}{a+8}=\sqrt{a}-1\)

18 tháng 6 2015

Đặt B  = \(\left(\frac{\left(a+3\sqrt{a}+1\right)\left(\sqrt{a}+1\right)-\left(a+\sqrt{a}\right)\left(\sqrt{a}+2\right)}{\left(\text{\sqrt{a}+2}\right)\left(a-1\right)}\right)\)  ($\sqrt{ a}$ + 2 là căn a )

\(=\frac{a\sqrt{a}+a+3a+3\sqrt{a}+\sqrt{a}+1-a\sqrt{a}-2a-a-2\sqrt{a}}{\left(\sqrt{a}+2\right)\left(a-1\right)}\)

\(\frac{a+3\sqrt{a}+2}{\left(\sqrt{a}+2\right)\left(a-1\right)}=\frac{\left(\sqrt{a}+2\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{a}+2\right)\left(a-1\right)}=\frac{\sqrt{a}+1}{a-1}\)(vì a - 1 = (căn a - 1 ) (căn a + 1 ) )

Dặt \(C=\frac{1}{\sqrt{a}+1}-\frac{1}{\sqrt{a}-1}=\frac{\sqrt{a}-1-\sqrt{a}-1}{a-1}=-\frac{2}{a-1}\)

A = B : C = \(\frac{\sqrt{a}+1}{a-1}:-\frac{2}{a-1}=\frac{\sqrt{a}+1}{a-1}\cdot\frac{a-1}{-2}=-\frac{\left(\sqrt{a}+1\right)}{2}\)

17 tháng 6 2015

Rut gon lai là (-1-căn a) / 2 

b,a = 3

NV
23 tháng 9 2019

ĐKXĐ:...

\(V=\left(\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\left(\frac{x-1-2\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\right)\)

\(=\left(\frac{2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\left(\frac{x-2\sqrt{x}-3}{\sqrt{x}+1}\right)=\frac{2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+1\right)}=\frac{2\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(W=\left(\frac{\sqrt{a}-1}{a+\sqrt{a}+1}-\frac{a-3\sqrt{a}+1}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}-\frac{1}{\sqrt{a}-1}\right).\left(\frac{1-\sqrt{a}}{a+1}\right)\)

\(=\left(\frac{\left(\sqrt{a}-1\right)^2-a+3\sqrt{a}-1-\left(a+\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}\right)\left(\frac{1-\sqrt{a}}{a+1}\right)\)

\(=\left(\frac{-\left(a+1\right)}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}\right)\left(\frac{-\left(\sqrt{a}-1\right)}{a+1}\right)=\frac{1}{a+\sqrt{a}+1}\)