Với mỗi lần cắt hoặc gấp, hãy tạo ra hình thang cân từ:
a) Mảnh bìa có dạng hình tam giác đều;
b) Mảnh bìa có dạng hình lục giác đều.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tham khảo :
a) Ta cắt hoặc gấp mảnh bìa hình tam giác đều theo một đường thẳng đi qua hai cạnh và song song với cạnh còn lại của hình tam giác đó, ta được hình thang cân.
b) Ta cắt hoặc gấp mảnh bìa hình lục giác đều theo một đường chéo chính FC (hoặc AD hoặc BE) ta được hình thang cân.
- ΔABC cân tại A có trục đối xứng là đường phân giác AH của góc BAC (đường này đồng thời là đường cao, đường trung trực, đường trung tuyến).
– Hình thang cân ABCD nhận đường thẳng đi qua trung điểm hai đáy HK làm trục đối xứng.
Chú ý:
- ∆ABC cân tại A có trục đối xứng là đường phân giác của góc BAC.
- Hình thang cân nhận đường thẳng đi qua trung điểm hai đáy làm trục đối xứng.
Đối với tam giác cân hình 38a:
# Đối với hình thang cân hình 38b:Tam giác cân ABC, trục đối xứng là đường cao AH với H là trung điểm của đoạn BC. Hình thang cân ABCD (AB // CD), trục đối xứng là đường thẳng KH với K, H lần lượt là trung điểm của AB và CD.a) Trong hình 125a có 4 tam giác cân bằng nhau.
b) Gọi H là trung điểm BC. Tam giác ABC có AH là đường trung tuyến nên đồng thời là đường cao.
Chiều cao ứng với đáy của mỗi tam giác:
c) Chu vi đáy của hình chóp là 4.5 = 20 (cm).
Diện tích xung quanh hình chóp:
Diện tích đáy: Sd = 52 = 25 (cm2)
Diện tích toàn phần của hình chóp:
Stp = Sd + Sxq = 121,8 (cm2)
a) Trong hình 125a có 4 tam giác cân bằng nhau.
b) Gọi H là trung điểm BC. Tam giác ABC có AH là đường trung tuyến nên đồng thời là đường cao.
Chiều cao ứng với đáy của mỗi tam giác:
c) Chu vi đáy của hình chóp là 4.5 = 20 (cm).
Diện tích xung quanh hình chóp:
Diện tích đáy: Sd = 52 = 25 (cm2)
Diện tích toàn phần của hình chóp:
Stp = Sd + Sxq = 121,8 (cm2)