K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
13 tháng 4 2021

Lời giải:
a) Xét tam giác $HEA$ và $HDB$ có:

$\widehat{HEA}=\widehat{HDB}=90^0$

$\widehat{EHA}=\widehat{DHB}$ (đối đỉnh)

$\Rightarrow \triangle HEA\sim \triangle HDB$ (g.g)

b) Xét tam giác $CKD$ và $CDA$ có:

$\widehat{C}$ chung

$\widehat{CKD}=\widehat{CDA}=90^0$ 

$\Rightarrow \triangle CKD\sim \triangle CDA$ (g.g)

$\Rightarrow \frac{CK}{CD}=\frac{CD}{CA}\Rightarrow CD^2=CK.CA$ (đpcm)

c) Xét tam giác $ADK$ và $DCK$ có:

$\widehat{AKD}=\widehat{DKC}=90^0$

$\widehat{ADK}=\widehat{DCK}$ (cùng phụ $\widehat{KDC}$)

$\Rightarrow \triangle ADK\sim \triangle DCK$ (g.g)

$\Rightarrow \frac{AD}{DC}=\frac{DK}{CK}\Leftrightarrow \frac{FD}{2DC}=\frac{DK}{2CN}$

$\Rightarrow \frac{FD}{DC}=\frac{DK}{CN}$

Tam giác $FDK$ và $DCN$ đồng dạng với nhau do:

$\frac{FD}{DC}=\frac{DK}{CN}$ (cmt)

$\widehat{FDK}=\widehat{DCN}$ (cùng phụ $\widehat{KDC}$)

$\Rightarrow \frac{DFK}=\widehat{CDN}$

$\Rightarrow \widehat{DFK}+\widehat{FDN}=\widehat{CDN}+\widehat{FDN}$

$\Leftrightarrow 180^0-\widehat{FSD}=\widehat{FDC}=90^0$

$\Rightarrow \widehat{FSD}=90^0$ nên ta có đpcm.

 

AH
Akai Haruma
Giáo viên
13 tháng 4 2021

Hình vẽ:

undefined

18 tháng 3 2021

J đây b

19 tháng 12 2021

Chưa viết hết đầu bài kìa

17 tháng 2 2023

Đề lỗi

17 tháng 2 2023

cho tam giác ABC nhọn (AB<AC) nội tiếp đường tròn (O;K) có BD là đường kính và đường cao AH của tam giác ABC cắt (O;K) tại E đề nek

17 tháng 2 2023

Đề lỗi

17 tháng 2 2023

 đề đây nha mn :((   cho tam giác ABC nhọn (AB<AC) nội tiếp đường tròn (O;K) có BD là đường kính và đường cao AH của tam giác ABC cắt (O;K) tại E

14 tháng 3 2023

Cho tam giác ABC nhọn AB<AC M là trung điểm của BC trên tia đời của tia MA có điểm E s cho AM=ME 
a) cmr tam giác AMB=CMR
b từ A kẻ D s cho HA =HD cmr CE = BP 
c cmr CE = CD tam giác AMD là tam giác j vì s 
D  CMR AM NHỎ HƠN AB +AC /2
​CHỈ LM MỖI Ý D THUI NHA NHANH NHA

a: Xét ΔAMB và ΔEMC có

MA=ME

góc AMB=góc EMC

MB=MC

=>ΔAMB=ΔEMC

b: Xet ΔBAD có

BH vừa là đường cao, vừa là trung tuyến

=>ΔBAD cân tại B

=>BD=BA=CE

c: Xet ΔMAD có

MH vừa là đường cao,vừa là trung tuyến

=>ΔMAD cân tại M

d: AM<1/2(AB+AC)

=>AE<AB+AC

=>AE<BE+AB(luôn đúng)

23 tháng 4 2022

thiếu

15 tháng 3 2021

Sao tôi viết câu hỏi nhưng chỉ hiển thị có 1 dòng

15 tháng 3 2021

Xem ảnh nguồn

22 tháng 12 2021

thiếu kìa