K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2016

a​) Gọi a = 120.k                          thì (k,l) = 1

           b = 120.l                                 k,l thuộc N​*

AH
Akai Haruma
Giáo viên
22 tháng 11 2021

Lời giải:

a. Đặt $a=6x, b=6y$ với $x,y$ là 2 số nguyên tố cùng nhau 

$a>b\Rightarrow x>y$

$BCNN(a,b)=6xy=120$

$\Rightarrow xy=20$
Vì $x>y$ và $x,y$ nguyên tố cùng nhau $(x,y)=(20,1)$ hoặc $(x,y)=(5,4)$

$\Rightarrow (a,b)=(120,6)$ hoặc $(a,b)=(30,24)$

b. Bạn làm tương tự.

11 tháng 12 2019

a. Bài làm :

Ta có : \(\hept{\begin{cases}ab=2400\\BCNN\left(a,b\right)=120\end{cases}}\)

\(\Rightarrow\)ƯCLN(a,b)=ab:BCNN(a,b)=2400:120=20

Vì ƯCLN(a,b)=20 nên ta có : \(\hept{\begin{cases}a=20m\\b=20n\\ƯCLN\left(m,n\right)=1\end{cases}}\)

 Mà ab=2400

\(\Rightarrow\)20m.20n=2400

\(\Rightarrow\)400m.n=2400

\(\Rightarrow\)mn=6

Vì ƯCLN(m,n)=1 nên ta có bảng sau :

m     1          6          2          3

n      6         1          3           2

a      20       120      40         60

b     120       20       60         40

Vậy (a;b)\(\in\){(20;120);(120;20);(40;60);(60;40)}

11 tháng 12 2019

b. Bài làm :

Ta có : ƯCLN(a,b)=5

            BCNN(a,b)=60

\(\Rightarrow\)ab=ƯCLN(a,b).BCNN(a,b)=5.60=300

Vì ƯCLN(a,b)=5 nên ta có : a=5m ; b=5n ; ƯCLN(m,n)=1 và m, n là các số tự nhiên

Mà ab=300

\(\Rightarrow\)5m.5n=300

\(\Rightarrow\)25m.n=300

\(\Rightarrow\)mn=12

Vì ƯCLN(m,n)=1 nên ta có bảng sau :

m     1          12          3          4

n      12        1            4         3

a       5         60         15        20

b      60        5           20       15

Vậy (a;b)\(\in\){(5;60);(60;5):(20;15):(15;20)}

11 tháng 12 2016

ý a : a = 1;b = 18 

ý b : a=1;b=4

ý c : a = 12 ; b = 84

12 tháng 12 2016

kết quả độ ra thì đơn giản nhưng cách trình bày mới quan trọng

2 tháng 12 2021

TK 

Ta có : ƯCLN(a,b) . BCNN(a,b) = a.b

⇒a.b=336.12=4032⇒a.b=336.12=4032

Vì ƯCLN (a,b) = 12

⇒{a=12kb=12q(ƯCLN(k,q)=1;k>q)⇒{a=12kb=12q(ƯCLN(k,q)=1;k>q)

Mà : a.b = 4032

⇒12k.12q=4032⇒(12.12)(k.q)=4032⇒12k.12q=4032⇒(12.12)(k.q)=4032

⇒144.k.q=4032⇒k.q=28⇒144.k.q=4032⇒k.q=28

+)

2 tháng 12 2021

Ta có : ƯCLN(a,b) . BCNN(a,b) = a.b

⇒a.b=336.12=4032⇒a.b=336.12=4032

Vì ƯCLN (a,b) = 12

⇒{a=12kb=12q(ƯCLN(k,q)=1;k>q)⇒{a=12kb=12q(ƯCLN(k,q)=1;k>q)

Mà : a.b = 4032

⇒12k.12q=4032⇒(12.12)(k.q)=4032⇒12k.12q=4032⇒(12.12)(k.q)=4032

⇒144.k.q=4032⇒k.q=28⇒144.k.q=4032⇒k.q=28

+) ⇒{k=28q=1⇒{a=28.12b=1.12⇒{a=336b=12⇒{k=28q=1⇒{a=28.12b=1.12⇒{a=336b=12

+) ⇒{k=14q=2⇒{a=14.12b=12.2⇒{a=168b=24⇒{k=14q=2⇒{a=14.12b=12.2⇒{a=168b=24

+) ⇒{k=7q=4⇒{a=7.12b=4.12⇒{a=84b=48⇒{k=7q=4⇒{a=7.12b=4.12⇒{a=84b=48

Vậy a = 336 ; b = 12

a = 168 ; b = 24

a = 84 ; b = 48Ta có : ƯCLN(a,b) . BCNN(a,b) = a.b

⇒a.b=336.12=4032⇒a.b=336.12=4032

Vì ƯCLN (a,b) = 12

⇒{a=12kb=12q(ƯCLN(k,q)=1;k>q)⇒{a=12kb=12q(ƯCLN(k,q)=1;k>q)

Mà : a.b = 4032

⇒12k.12q=4032⇒(12.12)(k.q)=4032⇒12k.12q=4032⇒(12.12)(k.q)=4032

⇒144.k.q=4032⇒k.q=28⇒144.k.q=4032⇒k.q=28

+) ⇒{k=28q=1⇒{a=28.12b=1.12⇒{a=336b=12⇒{k=28q=1⇒{a=28.12b=1.12⇒{a=336b=12

+) ⇒{k=14q=2⇒{a=14.12b=12.2⇒{a=168b=24⇒{k=14q=2⇒{a=14.12b=12.2⇒{a=168b=24

+) ⇒{k=7q=4⇒{a=7.12b=4.12⇒{a=84b=48⇒{k=7q=4⇒{a=7.12b=4.12⇒{a=84b=48

Vậy a = 336 ; b = 12

a = 168 ; b = 24

a = 84 ; b = 48

Chúc bạn học tốt nha!

26 tháng 8 2021

đặt a=12x,b=12y(x<y và ucln(x,y)=1 và x,y<1) do bcnn(a,b)=180 nên 180chia hết cho a và b nên 180 chia hết cho 12xy suy ra 15 chia hết cho xy mà x,y>1 và x<y nên x=3,y=5 suy ra a=36,b=60

5 tháng 11 2021
☺😊🥰😇😊😉🙃😂😍🤩😗☺☺😙😙