Tìm n e N để các số sau nguyên tố cùng nhau
18n + 3 và 21n + 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b,
Giả sử 18n+3 và 21n+7 cùng chia hết cho số nguyên tố d
Ta có: 6(21n+7)−7(18n+3)chia het cho d \(\Rightarrow\)21chia het d\(\Rightarrow\)d \(\in\){3;7}.
Hiển nhiên d \(\ne\)3 vì 21n+7 không chia hết cho 3.
Để (18n+3,21n+7)=1 thì d\(\ne\)7 tức là 18n+3 không chia hết cho 7 nếu 18n+3−21 không chia hết cho 7
\(\Leftrightarrow\)18(n−1) không chia hết cho 7
\(\Leftrightarrow\)n−1 không chia hết cho 7
\(\Leftrightarrow\)n\(\ne\)7k+1(k\(\in\)n)
Kết luận: Với n\(\ne\)7k+1(k\(\in\)N thì 18n+3 và 21n+7 là hai số nguyên tố cùng nhau.
a,
ko bt **** nhe con cau a ban hoi ng khac thu xem
a) Đặt d = (4n + 3, 2n + 3).
Ta có \(2\left(2n+3\right)-\left(4n+3\right)⋮d\Leftrightarrow3⋮d\Leftrightarrow\) d = 1 hoặc d = 3.
Do đó muốn hai số 4n + 3 và 2n + 3 nguyên tố cùng nhau thì d khác 3, tức 4n + 3 không chia hết cho 3 hoặc 2n + 3 không chia hết cho 3
\(\Leftrightarrow n⋮3̸\).
Vậy các số tự nhiên n cần tìm là các số tự nhiên không chia hết cho 3.
1, Gọi ƯCLN(2n + 3; 4n + 8) là d
=> 2n + 3 chia hết cho d => 4n + 6 chia hết cho d
4n + 8 chia hết cho d
=> 4n + 8 - (4n + 6) chia hết cho d
=> (4n - 4n) + (8 - 6) chia hết cho d
=> 2 chia hết cho d
=> d thuộc {1; 2}
Mà 2n + 3 là số lẻ và 2n + 3 chia hết cho d => d lẻ
=> d = 1
=> ƯCLN(2n + 3; 4n + 8) = 1
hay 2 số này nguyên tố cùng nhau
Vậy...
Gọi d là UCLN(18n+3,21n+7)
\(\Rightarrow\hept{\begin{cases}18n+3⋮d\\21n+7⋮d\end{cases}\Rightarrow\hept{\begin{cases}\left(18n+3\right):3⋮d\\\left(21n+7\right):7⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n+1⋮d\\3n+1⋮d\end{cases}}\Rightarrow\hept{\begin{cases}6n+1⋮d\\6n+2⋮d\end{cases}}}\)
Vì 6n+1,6n+2 là hai số tự nhiên liên tiếp nên d=1
=> 18n+3 và 21n+7 là hai số nguyên tố cùng nhau với mọi số tự nhiên n