Tính Nhanh :a/2001*2002+1981+2003*21/2002*2003-2001*2002
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{2001+2002}{2002+2003}< \dfrac{2001}{2002}+\dfrac{2002}{2003}\)
A = 2003 × 2002 - 2/2001 × 2003 + 2001
A = 2003 × (2001 + 1) - 2/2001 × 2003 + 2001
A = 2003 × 2001 + (2003 - 2)/2001 × 2003 + 2001
A = 2003 × 2001 + 2001/2001 × 2003 + 2001
A = 1
P=\(\frac{\left(2002+1\right)\times14+1988+2001\times2002}{2002\times\left(1+503+504\right)}\)
\(=\frac{2002\times14+2002+2001\times2002}{2002\times1008}\)
\(=\frac{2002\times\left(14+1+2001\right)}{2002\times1008}=\frac{2016}{1008}=2\)
2000/2001 * 2002/2003 * 2001/2002 * 2003/2004*2006/2000
=((2000/2001).2002):2003.2001/2002).2003):2004.2006)/2000
=1.000998004
\(\dfrac{2000}{2001}\cdot\dfrac{2002}{2003}\cdot\dfrac{2001}{2002}\cdot\dfrac{2003}{2004}\cdot\dfrac{2006}{2000}=\dfrac{2006}{2004}=\dfrac{1003}{1002}\)
16866807962
2001 . 2022 + 1981+2003 . 21/ 2002 . 2003 - 2001. 2002
= ( 2001. 2002 - 2001 . 2022 ) + ( 1981 + 2003 . 21/ 2002 . 2003)
= 0+( 1981 + ( 2003 . 21 / 2002 + 1)
= 0 + 1981+( 2002 . 21/2002+1+1)
= 1981 + ( 21+2)
= 1981+ 23
= 2004