Cho a,b,c là ba cạnh của một tam giác có chu vi bằng 2. Chứng minh rắng: a2+b2+c2+2abc <2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo:
https://hoc24.vn/cau-hoi/cho-a-b-c-la-do-dai-ba-canh-cua-mot-tam-giac-va-thoa-man-he-thuc-a-b-c-1-cmr-a2-b2-c2-12.139261258302
a) Vì a, b, c là độ dài 3 cạnh của một tam giác
⇒ a + c > b và a + b > c (Bất đẳng thức tam giác)
⇒ a + c – b > 0 và a + b – c > 0
Ta có: (b – c)2 < a2
⇔ a2 – (b – c)2 > 0
⇔ (a – (b – c))(a + (b – c)) > 0
⇔ (a – b + c).(a + b – c) > 0 (Luôn đúng vì a + c – b > 0 và a + b – c > 0).
Vậy ta có (b – c)2 < a2 (1) (đpcm)
b) Chứng minh tương tự phần a) ta có :
( a – b)2 < c2 (2)
(c – a)2 < b2 (3)
Cộng ba bất đẳng thức (1), (2), (3) ta có:
(b – c)2 + (c – a)2 + (a – b)2 < a2 + b2 + c2
⇒ b2 – 2bc + c2 + c2 – 2ca + a2 + a2 – 2ab + b2 < a2 + b2 + c2
⇒ 2(a2 + b2 + c2) – 2(ab + bc + ca) < a2 + b2 + c2
⇒ a2 + b2 + c2 < 2(ab + bc + ca) (đpcm).
Vì a,b,c là 3 cạnh tam giác nên \(a+b>c\Leftrightarrow ac+bc>c^2\)
CMTT: \(ab+bc>b^2;ab+ac>a^2\)
Cộng vế theo vế \(\Leftrightarrow a^2+b^2+c^2< ab+bc+ca+ab+bc+ca\)
\(\Leftrightarrow a^2+b^2+c^2< 2ab+2bc+2ca\\ \Leftrightarrow a^2+b^2+c^2-2ab-2bc-2ca< 0\)
Từ gt suy ra a < b + c nên 2a < a + b + c = 2
\(\Rightarrow a< 1\).
Chứng minh tương tự: \(b< 1;c< 1\).
Do đó \(\left(a-1\right)\left(b-1\right)\left(c-1\right)< 0\Leftrightarrow abc< ab+bc+ca-1\) (Do a + b + c = 2)
\(\Rightarrow a^2+b^2+c^2+2abc< a^2+b^2+c^2+2\left(ab+bc+ca-1\right)=\left(a+b+c\right)^2-2=2\) (đpcm).
a, b, c là độ dài 3 cạnh của tgiác nên ta có: b+c > a => ab+ac > a²
tương tự: bc+ab > b²; ca+bc > c²
cộng lại: 2ab+2bc+2ca > a²+b²+c² (*)
gthiết: 4 = (a+b+c)² = a²+b²+c² + 2ab+2bc+2ca > a²+b²+c² + a²+b²+c² {ad (*)}
=> 2 > a²+b²+c² (đpcm)
đúng nha