Cho 3x- 4y = 0.Tính GTNN của biểu thức M = \(x^2+y^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa thành tìm GTLN nhé !
Với x,y,z>0 chia 2 vế của \(xy+yz+xz=xyz\) cho \(xyz\) ta có :
\(xy+yz+xz=xyz\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\frac{1}{4x+3y+z}\le\frac{1}{64}\left(\frac{4}{x}+\frac{3}{y}+\frac{1}{z}\right)\). Tương tự cho 2 BĐT kia:
\(\frac{1}{x+4y+3z}\le\frac{1}{64}\left(\frac{1}{x}+\frac{4}{y}+\frac{3}{z}\right);\frac{1}{3x+y+4z}\le\frac{1}{64}\left(\frac{3}{x}+\frac{1}{y}+\frac{4}{z}\right)\)
Cộng theo vế 3 BĐT trên ta có:
\(M\leΣ\frac{1}{64}\left(\frac{4}{x}+\frac{3}{y}+\frac{1}{z}\right)=Σ\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{8}\)
Đẳng thức xảy ra khi \(x=y=z=3\)
Áp dụng bđt Bunhiacopxki , ta có :
\(0=\left(3.x+4.y\right)^2\le\left(3^2+4^2\right)\left(x^2+y^2\right)\)
\(\Rightarrow x^2+y^2\ge0\)
=> Min M = 0 \(\Leftrightarrow\begin{cases}\frac{x}{3}=\frac{y}{4}\\3x+4y=0\end{cases}\) \(\Leftrightarrow x=y=0\)
2.
A = xy + 2yz + 3xz = xy + xz + 2yz + 2xz = x(y + z) + 2z(y + z)
Áp dụng BĐT: (a+b)^2/4 ≥ ab dấu = khi a = b
Ta có:
(x + y + z)^2/4 ≥ x(y + z)
(x+ y +z)^2/4 ≥ z(y + z)
=> A ≤ 3(x + y + z)^2/4 = 3.36/4 = 27
=> A max = 27 xảy ra khi:
{x = y + z
{z = y + z
<=> y = 0 và x = z = 3
Câu hỏi của KHANH QUYNH MAI PHAM - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo!
a) ta có: \(\frac{x}{y}=\frac{3}{4}\Rightarrow4x=3y\)
\(D=\frac{4x-5y}{3x+4y}=\frac{3y-5y}{3y+4y-x}=\frac{-2y}{7y-x}=\frac{-2y}{7y-y3:4}\)
\(=\frac{-2y}{\frac{25}{4}y}=-2y:\left(\frac{25}{4}y\right)=-\frac{8}{25}\)
b) ta có: M=3x.(x-y) chia hết cho 11
N = y2 - x2 = y2 - xy - x2 + xy = y.(y-x) - x.(x-y) = (y-x).(y+x) = - (x-y).(y+x) chia hết cho 11
=> M-N chia hết cho 11 (đpcm)
Bài 2:
a, Sửa đề:
\(x^2-4=x^2+2x-2x-4=x\left(x+2\right)-2\left(x+2\right)\)
\(=\left(x+2\right)\left(x-2\right)\)
b, \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)
\(=\left[\left(x+2\right)\left(x+5\right)\right]\left[\left(x+3\right)\left(x+4\right)\right]-24\)
\(=\left(x^2+5x+2x+10\right)\left(x^2+4x+3x+12\right)-24\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)(1)
Đặt \(a=x^2+7x+10\Rightarrow a+2=x^2+7x+12\)
\(\Rightarrow\left(1\right)=a\left(a+2\right)-24=a^2+2a-24\)
\(=a^2-4a+6a-24=a.\left(a-4\right)+6.\left(a-4\right)\)
\(=\left(a-4\right)\left(a+6\right)\)(2)
Vì \(a=x^2+7x+10\) nên
\(\left(2\right)=\left(x^2+7x+10-4\right)\left(x^2+7x+10+6\right)\)
\(=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)
\(=\left(x^2+x+6x+6\right)\left(x^2+7x+16\right)\)
\(=\left[x.\left(x+1\right)+6.\left(x+1\right)\right]\left(x^2+7x+16\right)\)
\(=\left(x+1\right).\left(x+6\right)\left(x^2+7x+16\right)\)
Chúc bạn học tốt!!!
1,
Dùng định lý Bơ du :
\(f\left(-\dfrac{1}{3}\right)=3\left(-\dfrac{1}{3}\right)^3+10\left(-\dfrac{1}{3}\right)^2+3.\left(-\dfrac{1}{3}\right)+a-5=0\)
\(=>a=5\)
Vậy a = 5 thì A chia hết cho B .
b,
M = \(x^2-4x+4y^2+4y+5\)
= \(\left(x^2-4x+4\right)+\left(4y^2+4y+1\right)+5-\left(1+4\right)\)
\(=\left(x-2\right)^2+\left(2y+1\right)^2+0\)
Vậy GTNN của M = 0
khi x = 2 ; 2y + 1 = 0 => y = 1/2