K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác MAOB có \(\widehat{MAO}+\widehat{MBO}=180^0\)

nên MAOB là tứ giác nội tiếp

b: Xét (O) có

ΔABC nội tiếp

AC là đường kính

Do đó;ΔABC vuông tại B

Xét ΔACD vuông tại C có CB là đường cao

nên \(AB\cdot AD=AC^2=4R^2\)

20 tháng 5 2022

 Giải thích các bước giải:

a.Ta có: MA,MBMA,MB là tiếp tuyến của (O)→MO⊥AB(O)→MO⊥AB

Mà CDCD là tiếp tuyến của (O)→CD⊥AC(O)→CD⊥AC

→ˆOID=ˆOCD=90o→OID^=OCD^=90o

→O,I,D,C∈→O,I,D,C∈ đường tròn đường kính ODOD

b.Ta có: ˆAIO=ˆACD=90oAIO^=ACD^=90o

             ˆOAI=ˆCADOAI^=CAD^

→ΔAIO∼ΔACD(g.g)→ΔAIO∼ΔACD(g.g)

→AIAC=AOAD→AIAC=AOAD

→AI.AD=AO.AC=R⋅2R=2R2=8→AI.AD=AO.AC=R⋅2R=2R2=8

→2AI.AD=16→2AI.AD=16

→AB.AD=16→AB.AD=16

Vì MA,MBMA,MB là tiếp tuyến của (O)→MO⊥AB=I(O)→MO⊥AB=I là trung điểm ABAB

→AB=2AI→AB=2AI

c.Gọi MC∩OD=EMC∩OD=E

Ta có:

ˆCAD=ˆOAI=90o−ˆIAM=ˆAMI=ˆAMOCAD^=OAI^=90o−IAM^=AMI^=AMO^

Vì CDCD là tiếp tuyến của (O)(O)

Mà ˆMAO=ˆDCA=90oMAO^=DCA^=90o

→ΔMAO∼ΔACD(g.g)→ΔMAO∼ΔACD(g.g)

→MAAC=AOCD→MAAC=AOCD

→MAAC=OCCD→MAAC=OCCD

→MACO=ACCD→MACO=ACCD

Mà ˆMAC=ˆOCD=90oMAC^=OCD^=90o

→ΔMAC∼ΔOCD(c.g.c)→ΔMAC∼ΔOCD(c.g.c)

→ˆCOD=ˆCMA→COD^=CMA^

→ˆCOE=ˆCMA→COE^=CMA^

Do ˆOCE=ˆACMOCE^=ACM^

→ΔCEO∼ΔCAM(g.g)→ΔCEO∼ΔCAM(g.g)

→ˆCEO=ˆCAM=90o→CEO^=CAM^=90o

→OD⊥MC

 

 

 

 

26 tháng 12 2022

Nội tiếp chắn nửa đg tròn hả bạn :^?

 

25 tháng 5 2022

bn tham khao câu a vs b nha:

undefined

undefined

12 tháng 8 2018

1) Chứng minh: Tứ giác MAOB nội tiếp một đường tròn

Vẽ được các yếu tố để chứng minh phần (1).

Ta có M B O ^ = 90 0 ,   M A O ^ = 90 0  (theo t/c của tiếp tuyến và bán kính)

Suy ra:  M A O ^ + M B O ^ = 180 0 .Vậy tứ giác MAOB nội tiếp đường tròn.

2) Chứng minh: MN2 = NF. NA và MN = NH

Ta có A E / / M O ⇒ A E M ^ = E M N ^   mà   A E M ^ = M A F ^ ⇒ E M N ^ = M A F ^

Δ N M F   v à   Δ N A M có:  M N A ^ chung;  E M N ^ = M A F ^

nên  Δ N M F đồng dạng với  Δ N A M

⇒ N M N F = N A N M ⇒ N M 2 = N F . N A        1

Mặt khác có: A B F ^ = A E F ^ ⇒ A B F ^ = E M N   ^ h a y   H B F ^ = F M H ^  

=> MFHB là tứ giác nội tiếp

⇒ F H M ^ = F B M ^ = F A B ^   h a y   F H N ^ = N A H ^

Xét Δ N H F   &   Δ N A H   c ó   A N H   ^ c h u n g ;   N H F ^ = N A H ^

=> Δ N M F đồng dạng  Δ N A H ⇒ ⇒ N H N F = N A N H ⇒ N H 2 = N F . N A        2  

Từ (1) và (2) ta có NH = HM

3) Chứng minh:  H B 2 H F 2 − EF M F = 1 .

Xét Δ M AF  và Δ M E A  có: A M E ^  chung, M A F ^ = M E A ^

suy ra  Δ M AF  đồng dạng với  Δ M E A

⇒ M E M A = M A M F = A E A F ⇒ M E M F = A E 2 A F 2      (3)

Vì MFHB là tứ giác nội tiếp ⇒ M F B ^ = M H B ^ = 90 0 ⇒ B F E ^ = 90 0 A F H ^ = A H N ^ = 90 0 ⇒ A F E ^   = B F H ^  

Δ A E F  và Δ H B F  có: E F A ^ = B F H ^   ;   F E A ^ = F B A ^

suy ra  Δ A E F   ~   Δ H B F  

⇒ A E A F = H B H F ⇒ A E 2 A F 2 = H B 2 H F 2                (4)

 

Từ (3) và (4) ta có M E M F = H B 2 H F 2 ⇔ M F + F E M F = H B 2 H F 2 ⇔ 1 + F E M F = H B 2 H F 2 ⇔ H B 2 H F 2 − F E M F = 1