Cho góc xOy. Trên tia Ox lấy điểm C, trên tia Oy lấy điểm D sao cho OD=OC. Vẽ các cung tròn tâm C và tâm D có cùng bán kính sao cho chúng cắt nhau ở điểm E nằm trong góc xOy. Chứng minh rằng OE là tia phân giác của góc xOy.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔCOE và ΔDOE. Ta có:
OE cạnh chung
OD = OC (giả thiết)
DE=CE ( bán kính 2 cung tròn có bán kính bằng nhau)
Suy ra: ΔCOE= ΔDOE(c.c.c)
Vậy : ∠(COE) =∠(DOE) (hai góc tương ứng)
Vì điểm E nằm trong góc xOy nên tia OE nằm giữa OC và OD (2)
Từ (1) và (2) suy ra: OE là tia phân giác của góc DOC hay OE là tia phân giác của góc xOy
Cậu tự vẽ hình nha
Vì OD=OC
Vì bán kính tâm C và D cùng bán kính
suy ra DE=CE
Xét hai tam giác OCE và ODE
Ta có OD=OC
DE=CE
OE là cạnh chung
Vậy tam giác OCE bằng tam giác ODE
Suy ra góc COE bằng góc DOE
Vậy OE là tia phân giác của góc xoy
a: Xét ΔOCE và ΔODE có
OC=OD
EC=ED
OE chung
=>ΔOCE=ΔODE
b: ΔOCE=ΔODE
=>góc COE=gócDOE
=>OE là phân giác của góc xOy
c: ΔOCE=ΔODE
=>góc OCE=góc ODE
Trong △COE và △DOE có
OE là cạnh chung
OC = OD (gt)
CE = DE (gt)
Do đó △COE = △DOE (c.c.c)
Suy ra \(\widehat{COE}\) = \(\widehat{DOE}\) (cặp góc tương ứng )
Vậy OE là tia phân giác của góc xOy
a: Xét ΔAOC và ΔBOC có
OA=OB
OC chung
AC=BC
Do đó: ΔAOC=ΔBOC
a: Xét ΔAOC và ΔBOC có
OA=OB
OC chung
AC=BC
Do đó: ΔAOC=ΔBOC