Câu 10: Cho tam giác ABC có diện tích 12cm2. Điểm M thuộc cạnh BC sao cho BM = Điểm N thuộc cạnh AC sao cho AN = AC. Diện tích tứ giác ABMN là: …..
a/ 8cm2 b/ 9cm2 c/ cm2 d/ cm2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài giải
Vì BM = CM và M nằm trên đoạn BC nên BM = CM = \(\frac{1}{2}\) BC.
Ta thấy: SABM = SAMC = \(\frac{1}{2}\) SABC vì chúng có chung chiều cao là chiều cao của tam giác ABC và có đáy BM = CM = \(\frac{1}{2}\) BC.
Do đó SABM = SAMC = \(\frac{1}{2}\) × 60 = 30 (cm2)
Ta lại thấy: SAMN = \(\frac{1}{3}\) SAMC vì chúng có chung chiều cao kẻ từ đỉnh M xuống đoạn AC và có đáy AN = \(\frac{1}{3}\) AC.
Do đó SAMN = \(\frac{1}{3}\) × 30 = 10 (cm2)
Dễ thấy SABMN = SABM + SAMN = 30 + 10 = 40 (cm2)
Vậy diện tích hình bình hành ABMN là 40 cm2
Bạn tự vẽ hình được rồi nha, mình không biết vẽ trên trang này kiểu nào)
Bài giải
Vì BM = CM và M nằm trên đoạn BC nên BM = CM = $\frac{1}{2}$12 BC.
Ta thấy: SABM = SAMC =\(\frac{1}{2}\) SABC vì chúng có chung chiều cao là chiều cao của tam giác ABC và có đáy BM = CM = \(\frac{1}{2}\) BC.
Do đó SABM = SAMC = \(\frac{1}{2}\) × 60 = 30 (cm2)
Ta lại thấy: SAMN = \(\frac{1}{3}\) SAMC vì chúng có chung chiều cao kẻ từ đỉnh M xuống đoạn AC và có đáy AN = \(\frac{1}{3}\) AC.
Do đó SAMN =\(\frac{1}{3}\) × 30 = 10 (cm2)
Dễ thấy SABMN = SABM + SAMN = 30 + 10 = 40 (cm2)
Vậy diện tích hình bình hành ABMN là 40 cm2
a)
* Ta thấy: Hai tam giác ABN và ABC có chung đường cao hạ từ điểm B xuống đoạn thẳng AC và có đáy AN = 1/3 AC
=> SABN = 1/3 SABC
=> SABN = 1/3 * 120 cm2
=> SABN = 40 cm2
* Theo hình vẽ, ta thấy:
SBCN = SABC - SABN
=> SBCN = 120 cm2 - 40 cm2
=> SBCN = 80 cm2
Mà hai tam giác BMN và BCN có chung chiều cao hạ từ điểm N xuống đoạn thẳng BC và có đáy BM = MC => 2 BM = MC + BM => BM = 1/2 BC
=> SBMN = 1/2 SBCN
=> SBMN = 1/2 * 80 cm2
=> SBMN = 40 cm2
b) Nhìn vào hình vẽ, ta thấy:
Hai tam giác ABQ và ABN có chung đường cao hạ từ điểm A xuống đoạn thẳng BN nên: SABQ / SABN = BQ / BN
Hai tam giác BMQ và BMN có chung đường cao hạ từ điểm M xuống đoạn thẳng BN nên: SBMQ / SBMN = BQ / BN
Từ đây suy ra: SABQ / SABN = SBMQ / SBMN
Mà theo phần a), SABN = 40 cm2 , SBMN = 40 cm2 => SABN = SBMN
=> SABQ = SBMQ
Mà hai tam giác ABQ và BMQ có chung đường cao hạ từ điểm B xuống đoạn thẳng AM => AQ = QM ( đpcm )
\(S_{BMC_{ }_{ }}=\frac{BM.CA}{2}=\frac{20.60}{2}=600cm^2\)
Ta có MN là đường tb của tam giác ABC => MN//AC và MN.2 = AC
=> MN là đường cao của AB ,MN=30 cm
=> SABN=30.40:2=600cm2
b)SAMNC=(MN+AC) .AM:2=(30+60).20:2=900cm2
c)SMAC=MA.AC:2
SANC=CA.MA:2
=> SMAC=SANC=>SAMO=SCON
Hai tam giác AOM và ABM có chung đường cao hạ từ A
nên = S A O M S A B M = O M B M = 1 4
=> SAOM = 1 4 SABM
Hai tam giác ABM và ABC có chung đường cao hạ từ B
nên S A B M S A B C = A M A C = 1 3
=> SABM = 1 3 SABC
Vậy SAOM = 1 4 . 1 3 .12 = 1 (cm2)
Đáp án cần chọn là: D