Tìm số tự nhiên nhỏ hơn 200, biết rằng số đó chia cho 2 dư 1, chia cho 3 dư 1, chia cho 5 thiếu 1 và chia hết cho 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cộng để tạo bội thôi bạn dạng này nhiều lắm
bạn vào câu hỏi tương tự
Giải:
Gọi số tự nhiên đó là a ( a < 30 )
Theo đầu bài ta có:
a chia cho 3 dư 1
\(\Rightarrow\) a - 1 \(⋮\) 3
a chia cho 4 dư 1
\(\Rightarrow\) a - 1 \(⋮\) 4
\(\Rightarrow\) a - 1 \(⋮\) cả 3 và 4
\(\Rightarrow\) a - 1 \(\in\) BC ( 3 ; 4 )
Mình sẽ làm theo cách tìm BC thông qua tìm BCNN nhé! Còn nếu không thì bạn cũng có thể làm theo cách kia nhé!
Vì 3 và 4 là 2 số nguyên tố cùng nhau
\(\Rightarrow\)BCNN ( 3 ; 4 ) = 3 . 4 = 12
\(\Rightarrow\) a \(\in\) BC ( 3 ; 4 ) = B ( 12 ) = { 0 ; 12 ; 24 ; 36 ; ... }
\(\Rightarrow\) a - 1 \(\in\) { 0 ; 12 ; 24 ; 36 }
Ta xét từng trường hợp:
- Nếu:
+ a - 1 = 0 \(\Rightarrow\) a = 0 + 1 = 1
+ a - 1 = 12 \(\Rightarrow\) a = 12 + 1 = 13
+ a - 1 = 24 \(\Rightarrow\) a = 24 + 1 = 25
+ a - 1 = 36 \(\Rightarrow\) a = 36 + 1 = 37 ( loại vì a < 30 )
Như vậy, vì a < 30 nên a = { 1 ; 13 ; 25 }
Mình nghĩ chắc bạn sẽ bảo là vì sao a < 30 mà mình vẫn tính là a - 1 \(\in\) { 0 ; 12 ; 24 ; 36 } ( vẫn tính cả 36 ) đúng không?
Vậy thì tiện thể mình giải thích cho luôn nhé! Mình tính thêm như vậy là vì có thể có trường hợp là a - 1 = 30 ( 30 = 30 ) và a = 29 ( 29 < 30 ) nhé bạn! Vậy nên bạn có thể tính thêm mà không lo bị nhầm lẫn nhé vì mình đổi kí hiệu là \(\in\) rồi mà! Mà nếu bài mình bớt đi ở phần này mà phần sau mình thêm lại thì bài mình vẫn bị coi là sai sót nhé! Mình nói như vậy là để bạn có thể cẩn thận trong bài học lần này và lần sau nhé! Chúc bạn luôn học giỏi! Mong bạn đừng nói mình là dài dòng văn tự vì ngày thường thì mình cũng là đứa hay \(l\text{ắm}\) \(m\text{ồm}\)\(b\text{à}\)\(t\text{ám}\)\(!\) ^_^
Gọi số đó là a
\(\Rightarrow\) a - 1 \(⋮\)2,3,5
Mà BCNN(2,3,5) = 30
\(\Rightarrow\) a = 31
Vậy số cần tìm là 31
a, Gọi số cần tìm là a
Ta có: a chia 9 dư 5 => a - 5 chia hết cho 9 => 2(a - 5) chia hết cho 9 => 2a - 10 chia hết cho 9 => 2a - 10 + 9 chia hết cho 9 => 2a - 1 chia hết cho 9
a chia 7 dư 4 => a - 4 chia hết cho 7 => 2(a - 4) chia hết cho 7 => 2a - 8 chia hết cho 9 => 2a - 8 + 7 chia hết cho 7 => 2a - 1 chia hết cho 7
a chia 5 dư 3 => a - 3 chia hết cho 5 => 2(a - 3) chia hết cho 5 => 2a - 6 chia hết cho 5 => 2a - 6 + 5 chia hết cho 5 => 2a - 1 chia hết cho 5
=> 2a - 1 thuộc BC(5;7;9)
5 = 5
7 = 7
9 = 9
BCNN(5,7,9) = 5.7.9 = 315
=> 2a - 1 = 315 => 2a = 316 => a = 158
Vậy số cần tìm là 158
b, Ta có:
A = 1 + 2012 + 20122 + ... + 201272
2012A = 2012 + 20122 + 20123 +...+ 201273
2012A - A = (2012 + 20122 + 20123 + .... + 201273) - (1 + 2012 + 20122 + ... + 201272)
2011A = 201273 - 1
A = \(\frac{2012^{73}-1}{2011}\)
Vì \(\frac{2012^{73}-1}{2011}< 2012^{73}-1\) nên A < B
Vậy A < B
a chia cho 4, 5, 6 dư 1 nên (a - 1) chia hết cho 4, 5, 6
=> (a - 1) là bội chung của (4,5,6)
=> a - 1 = 60n => a = 60n+1 với 1 ≤ n < (400-1)/60 = 6,65
mặt khác a chia hết cho 7 => a = 7m
Vậy 7m = 60n + 1
có 1 chia 7 dư 1
=> 60n chia 7 dư 6
mà 60 chia 7 dư 4
=> n chia 7 dư 5
mà n chỉ lấy từ 1 đến 6 => n = 5
a = 60.5 + 1 = 301
Gọi số cần tìm là a ( a thuộc N*)
a chia cho 4, 5, 6 dư 1 nên (a - 1) chia hết cho 4, 5, 6
=> (a - 1) là bội chung của (4,5,6)
=> a - 1 = 60n => a = 60n+1 với 1 ≤ n < (400-1)/60 = 6,65
mặt khác a chia hết cho 7 => a = 7m
Vậy 7m = 60n + 1
có 1 chia 7 dư 1
=> 60n chia 7 dư 6
mà 60 chia 7 dư 4
=> n chia 7 dư 5
mà n chỉ lấy từ 1 đến 6 => n = 5
a = 60.5 + 1 = 301