Thực Hiện phép tính
B= 1 + 1/2(1+2) + 1/3 (1+2+3)+1/4(1+2+3+4)+....+1/50(1+2+3+....+50)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=-\left[\dfrac{1}{3}\cdot\dfrac{\left(3+1\right)\cdot3}{2}+\dfrac{1}{4}\cdot\dfrac{\left(4+1\right)\cdot4}{2}+...+\dfrac{1}{50}\cdot\dfrac{\left(50+1\right)\cdot50}{2}\right]\\ C=-\left(\dfrac{1}{3}\cdot\dfrac{4\cdot3}{2}+\dfrac{1}{4}\cdot\dfrac{5\cdot4}{2}+...+\dfrac{1}{50}\cdot\dfrac{51\cdot50}{2}\right)\\ C=-\left(2+\dfrac{5}{2}+...+\dfrac{51}{2}\right)\\ C=-\dfrac{4+5+...+51}{2}=-\dfrac{\dfrac{\left(51+4\right)\left(51-4+1\right)}{2}}{2}=-\dfrac{55\cdot48}{4}=-660\)
Bài 2:
a: A=(12,87+14,13)+(-14,7-37,3)
=27-52=-25
b: B=-1/3+2/5-2/3-3/5+1/5
=-1
d: \(\dfrac{1}{27}:\left(-\dfrac{1}{3}\right)^2+75\%\cdot\left(-\dfrac{2^2}{3}\right)\)
\(=\dfrac{1}{27}:\dfrac{1}{9}+\dfrac{3}{4}\cdot\dfrac{-4}{3}\)
\(=\dfrac{1}{3}-1\)
\(=-\dfrac{2}{3}\)
a) \(\left[\frac{1}{3}\right]^{50}.\left(-9\right)^{25}-\frac{2}{3}:4\)
\(\Rightarrow\frac{1}{3^{50}}.\left(-9\right)^{25}-\frac{2}{3}.\frac{1}{4}\)
\(\Rightarrow\frac{\left(-9\right)}{9^{25}}-\frac{1}{6}\)
\(\Rightarrow1-\frac{1}{6}\)
\(\Rightarrow\frac{6}{6}-\frac{1}{6}=\frac{5}{6}\)
Vậy = 5/6
1.
\(\sqrt{50}-3\sqrt{8}+\sqrt{32}=5\sqrt{2}-6\sqrt{2}+4\sqrt{2}=3\sqrt{2}\)
2.
a, ĐK: \(x\in R\)
\(pt\Leftrightarrow\sqrt{\left(x-2\right)^2}=1\)
\(\Leftrightarrow\left|x-2\right|=1\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
b, ĐK: \(x\ge3\)
\(pt\Leftrightarrow\sqrt{x-3}\left(\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-3}=0\\\sqrt{x}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=1\left(l\right)\end{matrix}\right.\)
\(B=1+\dfrac{1}{2}\cdot\dfrac{2\cdot3}{2}+\dfrac{1}{3}\cdot\dfrac{3\cdot4}{2}+...+\dfrac{1}{50}\cdot\dfrac{50\cdot51}{2}\)
\(=1+\dfrac{3}{2}+\dfrac{4}{2}+...+\dfrac{51}{2}\)
\(=\dfrac{50\cdot\dfrac{\left(51+2\right)}{2}}{2}=50\cdot\dfrac{53}{4}=662.5\)