3^n+2+2^n+2-3^n+2^n chia hết cho 5. chứng minh dùm mk nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(n^2+n+2=n\left(n+1\right)+2\)
n(n+1) là tích của hai số tự nhiên liên tiếp nên chia hết cho 3.
Mà 2 không chia hết cho 3
=> n(n + 1) + 2 không chia hết cho 3
Vậy : \(n^2+n+2\) không chia hết cho 2
sai rùi bn,n(n+1) là số tự nhiên liên tiếp thì chia hết cho 2 nhé,3 số tự nhiên liên tiếp mới chia hết cho 3
b, n, n+1 và n+2 là ba số liên tiếp
Vậy có ít nhất 1 số chia hết cho 2 và 3
Tích có số chia hết cho 2,3 thì cũng chia hết cho 2,3
Lời giải:
$3^{n+2}-2^{n+2}+3^n-2^n=9.3^n-4.2^n+3^n-2^n$
$=(9.3^n+3^n)-(4.2^n+2^n)=10.3^n-5.2^n$
$=10.3^n-10.2^{n-1}=10(3^n-2^{n-1})\vdots 10$ với mọi $n\in\mathbb{N}^*$
\(A=3.\left(3^4\right)^{10}+2\)
Do 34 có tận cùng là 1 nên A có tận cùng là 5 nên chia hết cho 5
\(B=2.\left(2^4\right)^n+3\)
Do 24 có tận chùng là 6 nên (24)n có tận cùng là 6 => 2.(24)n có tận cùng là 2 => B có tận cùng là 5 nên chia hết cho 5
Trường hợp còn lại là tương tự
a, vì n^3+3n^2+2^n chia hết cho 6 nên:
n=3+3-2+2 chia hết cho 6
n= 2
b,n= 13-5 = n vậy nên:
suy ra : 5-13= n
vậy n =(-8)
k nha gagagagagaggaga