Cho tam giác DEF vuông tại D . Tia phân giác của góc DEF cắt DF tại I. TừI kẻ IH vuông góc với EF tại H. Chứng minh DI=IH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) xét ΔHED và ΔDEF có
\(\widehat{EHD}=\widehat{EDF}=\)90o
\(\widehat{E} chung\)
=> ΔHED ∼ ΔDEF (gg)
b) Xét ΔDEF có \(\widehat{D}=\)90o
=> DE2+DF2=EF2
=>62+82=EF2
=> EF=10 cm
SΔDEF=\(\dfrac{ED.DF}{2}=\dfrac{DH.EF}{2}\)=> ED.DF=DH.EF => 6.8=DH.10
=> DH =4,8 cm
c) Xét ΔDEH có \(\widehat{EHD}=90\)o
=> HD2.HE2=ED2
=>4.82+HE2=62
=> HE=3.6
ta lại có DI là phân giác
=> \(\dfrac{EI}{IH}=\dfrac{ED}{HD}\)
=>\(\dfrac{EI}{EH-EI}=\dfrac{6}{4.8} \)=>\(\dfrac{EI}{3.6-EI}=\dfrac{6}{4.8}\)=>EI=2
=> IH=EH-EI=3.6-2=1.6
a) Xét ΔHED vuông tại H và ΔDEF vuông tại D có
\(\widehat{HED}\) chung
Do đó: ΔHED\(\sim\)ΔDEF(g-g)
Bài 10. Cho tam giác DEF vuông tại D, có . Tia phân giác của góc F cắt DE tại I. Kẻ IH vuông góc với EF tại H ( ).
a. Chứng minh: DFI = HFI
b. DFH là tam giác gì? Vì sao?.
c. Qua E kẻ đường thẳng vuông góc với DH tại N. Chứng minh EN // FI.
Bài 11. Cho cân ở A. Trên tia đối của các tia BC và CB lấy thứ tự hai điểm D và E sao cho BD = CE.
a) Chứng minh cân
b) Gọi M là trung điểm của BC. Chứng minh AM là tia phân giác của .
c) Từ B và C kẻ BH, CK theo thứ tự vuông góc với AD và AE Chứng minh: BH = CK.
d) Chứng minh ba đường thẳng AM, BH, CK đồng quy. Đây ạ
Xét ΔDEI vuông tại E và ΔDHI vuông tại H có
DI chung
góc EDI=góc HDI
=>ΔDEI=ΔDHI
Xét ΔDEI vuông tại E và ΔDHI vuông tại H có
DI chung
góc EDI=góc HDI
=>ΔDEI=ΔDHI
Xét ΔEDI vuông tại D và ΔEHI vuông tại H có
EI chung
\(\widehat{DEI}=\widehat{HEI}\)
Do đó ΔEDI=ΔEHI
Suy ra: ID=IH