K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2016

gọi A=p+2 , B=p+16

Xét p=2 ta có A và B cùng là hợp số nên 2 không phải là số cần tìm 

nên p > 2  => p có dạng 3k ; 3k+1 hoặc 3k+2 ( với k>0)

TH1 p=3k+1 

thay vào A ta có A=3k+1+2=3k+3=3(k+1) chia hết cho 3 và k+1(k>0 => k+1>1)

=> A là hợp số

TH2 p=3k+2

thay vào B ta có B= 3k+2+16=3k+18=3(k+6) chia hết cho 3 và k+6 => B là hợp số 

Vậy để thỏa mãn A và B cùng là số nguyên tố thi p=3k 

mà p là số nguyên tố => p=3 thay vào A và B ta có A=5 và B=19 (tm)

vậy p=3...

1 tháng 11 2016

Với p=2 suy ra p+2=4 là hợp số suy ra p khác

Với p=3 suy ra p+2=5,p+16=19 là số nguyên tố (thỏa mãn đề bài)

Nếu p lớn hơn 3 suy ra p=3k+1 hoặc 3k+2

Với p=3k+1 thì p+2=3k+1+2=3k+3 là số nguyên tố (loại)

Với p=3k+2 thì p+16= 3k+2+16=3k+18 là số nguyên tố (loại)

Vậy p=3

12 tháng 12 2017
P=2 suy ra p+16=18 là hợp số suy ra p=2 loại P=3 suy ra p+16=19,p+20=29 là 2 số nguyên tố cùng nhau suy ra p=3 thỏa mãn P>3 suy ra p=3k+1,p=3k+2 (k thuộc N*) Nếu p=3k+1 suy ra p+16=3k+17=3×(k+1)suy ra p=3k+1 là hợp số (loại) Nếu p=3k+2 suy ra p+20=3k+22=3.(k+2)suy ra p=3k+2 loại Vậy p=3
26 tháng 2 2021

Bài 1:

Nếu p = 2 thì p + 2 = 2 + 2 = 4 không là số nguyên tố

2 + 4 = 6 không là số nguyên tố

Vậy p = 2 không thỏa mãn

Nếu p = 3 thì p + 2 = 3 + 2 = 5 là số nguyên tố

3 + 4 = 7 là số nguyên tố

Vậy p = 3 thỏa mãn

Nếu p > 3 thì p = 3k + 1 hoặc p = 3k + 2 

Khi p = 3k + 1 thì p + 2 = 3k + 1 + 2 = 3k + 3 = 3(k + 1) không là số nguyên tố

Vậy p = 3k + 1 không thỏa mãn

Khi p = 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 = 3(k + 2) không là số nguyên tố

Vậy p = 3k + 2 không thỏa mãn

Vậy p = 3 thỏa mãn duy nhất.

26 tháng 2 2021

Bài 2:

Khi ta xét 3 số tự nhiên liên tiếp 4p; 4p + 1; 4p + 2 thì chắc chắn sẽ có một số chia hết cho 3

p là số nguyên tố; p > 3 nên p không chia hết cho 3 => 4p không chia hết cho 3

Ta thấy 2p + 1 là số nguyên tố; p > 3 => 2p + 1 > 3 nên 2p + 1 không chia hết cho 3 => 2(2p + 1) không chia hết cho 3 -> 4p + 2 không chia hết cho 3

Vì thế 4p + 1 phải chia hết cho 3

Mà p > 3 nên 4p + 1 > 3

=> 4p + 1 không là số nguyên tố. 4p + 1 là hợp số.

5 tháng 4 2022

xét  p = 2 => p + 8 = 2 + 8 = 10 (loại)

xét p = 3 => p + 8 = 3 + 8 = 11 (tm) 

                    p + 16 = 3 + 16 = 19 (tm)

xét p là snt và p > 3 => p = 3k + 1 hoặc p = 3k + 2

với p = 3k + 1 => p + 8 = 3k + 1 + 8 = 3k + 9 = 3(k + 3) (loại)

với p = 3k + 2 => p + 16 = 3k + 2 + 16 = 3k + 18 = 3(k + 6) (loại)

vậy p = 3

 

5 tháng 4 2022

1 phút đc từng này

25 tháng 2 2021

Thử `p=2`

`=>p+2=4(HS)`

`=>p=2`(loại).

Thử `p=3`

`=>p+12=15(HS)`

`=>p=3`(loại).

Thử `p=5`

`=>` \begin{cases}p+2=7(SNT)\\p+6=11(SNT)\\p+8=13(SNT)\\p+12=17(SNT)\\p+14=19(SNT)\\\end{cases}

`=>p=5(TM)`

Nếu `p>5` mà p là SNT

`=>p cancel{vdost} 5`

`=>p=5k+1,5k+2,5k+3,5k+4`

`+)p=5k+1=>p+14=5k+15 vdots 5`

`=>p=5k+1` (loại).

`+)p=5k+2=>p+8=5k+10 vdots 5`

`=>p=5k+2` (loại).

`+)p=5k+3=>p+12=5k+15 vdots 5`

`=>p=5k+3` (loại).

`+)p=5k+4=>p+6=5k+10 vdots 5`

`=>p=5k+4` (loại).

Vậy `p=5`

25 tháng 2 2021

Ôi trời ghi nhầm thực ra là p không chia hết cho 5