Cho tam giác ABC cân tại A có cạnh BC không đổi, M là một điểm thuộc cạnh BC. kẻ ME, MF lần lượt vuông góc với cạnh AB, AC.
C/M: ME+MF không đổi.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ CK vuông góc với đường thằng FM.
Tứ giác HCKF có 3 góc vuông nên nó là hình chữ nhật.
Xét ∆FMB và ∆KMC:
\(\widehat{BFM}=\widehat{CKM}=90^o\)
\(\widehat{FMB}=\widehat{KMC}\) (2 góc đối đỉnh)
=> ∆FMB~∆KMC (g.g)
=> \(\widehat{FBM}=\widehat{KCM}\)
Xét ∆ECM và ∆KCM:
MC: cạnh chung
\(\widehat{ECM}=\widehat{KCM}\left(=\widehat{FBM}\right)\)
\(\widehat{CEM}=\widehat{CKM}=90^o\)
=> ∆ECM=∆KCM (ch.gn)
=> ME=MK (2 cạnh tương ứng)
Ta có: MF+ME=MF+MK=FK
Mà HCKF là hình chữ nhật(cmt) nên FK=CH
=> MF+ME=CH
Vì ∆ABC không đổi nên CH không đổi, từ đó suy ra tổng MF+ME không đổi khi M di chuyển trên BC.
- Xét tam giác ABC vuông cân tại A có:
AO là trung tuyến ứng với cạnh huyền BC (O là trung điểm BC)
=>AO=BO=CO=\(\dfrac{1}{2}\)BC ; AO⊥BC tại O.
- Ta có: \(\widehat{EAF}=\widehat{AEM}=\widehat{AFM}=90^0\) nên AEMF là hình chữ nhật.
=> AE=MF ; AB//MF
- Ta có: \(\widehat{ABC}=\widehat{FMC}=45^0\) (AB//MF, tam giác ABC vuông cân tại A).
Mà tam giác MFC vuông tại F (MF⊥AC tại F) nên tam giác MFC vuông cân tại F.
=>MF=CF=AE.
- Ta có: Tam giác AOB vuông tại O (AO⊥BC tại O) mà AO=BO (cmt) nên tam giác AOB vuông cân tại O.
- Xét tam giác OAE và tam giác OCF có:
OA=OC (cmt)
\(\widehat{OCF}=\widehat{OAE}=45^0\) (tam giác ABC vuông cân tại A, tam giác AOB vuông cân tại O).
AE=CF (cmt)
=>Tam giác OAE= Tam giác OCF (c-g-c)
=> OE=OF (2 cạnh tương ứng).
\(\widehat{AOE}=\widehat{COF}\) (2 góc tương ứng) mà \(\widehat{COF}+\widehat{AOF}=90^0\) (AO⊥BC tại O).
nên \(\widehat{AOE}+\widehat{AOF}=90^0\) =>\(\widehat{EOF}=90^0\) =>Tam giác OEF vuông tại O mà OE=OF (cmt) nên tam giác OEF vuông cân tại O.
a: Xét ΔAMB và ΔAMC co
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
=>góc MAB=góc MAC
Xét ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
góc EAM=góc FAM
=>ΔAEM=ΔAFM
=>AE=AF và ME=MF
b: Xét ΔABC có AE/AB=AF/AC
nên EF//BC
c: IN//EM
=>NI/ME=BN/BM
=>NI/MF=BN/CM
=>NI/BN=MF/CM
FM//NK
=>MF/NK=CM/CN
=>MF/CM=NK/CN
=>NK/CN=NI/BN=(NI+NK)/BC ko đổi