Giải phương trình:\(\sqrt{x^2-3x+3}\) + \(\sqrt{x^2-3x+6}\) = 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
dkxd :
\(\hept{\begin{cases}x^2-3x+3\ge0\Leftrightarrow\left(x^2-\frac{2.3x}{2}+\frac{9}{4}+\frac{3}{4}\right)=\left(x-\frac{3}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\\x^2-3x+6\ge0\Leftrightarrow x^2-\frac{2.3}{2}+\frac{9}{4}+\frac{15}{4}=\left(x-\frac{3}{2}\right)^2+\frac{15}{4}\ge\frac{15}{4}\end{cases}}\)
\(x\ge\frac{3}{2}\)
\(\sqrt{x^2-\frac{2x.3}{2}+\frac{9}{4}+3-\frac{9}{4}}+\sqrt{x^2-\frac{2.x.3}{2}+\frac{9}{4}+6-\frac{9}{4}}=3.\)
\(\sqrt{\left(x-\frac{3}{2}\right)^2+\frac{3}{4}}+\sqrt{\left(x-\frac{3}{2}\right)^2+\frac{15}{4}}=3\)
đặt (x-3/2)=t ta được
\(\sqrt{t^2+\frac{3}{4}}+\sqrt{t^2+\frac{15}{4}}=3\)
bình hương 2 vế ta được
\(2t^2+\frac{18}{4}+2\sqrt{\left(t^2+\frac{3}{4}\right)\left(t^2+\frac{15}{4}\right)}=9\)
\(2t^2+2\sqrt{t^4+2.\frac{9}{4}t^2+\frac{81}{16}-\frac{36}{16}}=\frac{18}{4}\)
\(2t^2+2\sqrt{\left(t^2+\frac{9}{4}\right)^2-\frac{36}{16}}=\frac{18}{4}.\)
\(4\left(t^2+\frac{9}{4}\right)^2-\frac{144}{16}=\left(\frac{18}{4}-2t^2\right)^2\)
\(4t^2+18t^2+\frac{324-144}{16}=\frac{324}{16}-18t^2+4t^2\)
\(36t^2=\frac{144}{16}\)
\(t^2=\frac{1}{4},t=\frac{1}{2}\)
thay x-3/2 vào ta được
\(x-\frac{3}{2}=\frac{1}{2}\)
\(x=2\)
vì ko biết đúng sai nên ta thử thay x=2 vào pt ta được
\(\sqrt{4-6+3}+\sqrt{4-6+6}=3\)
\(\sqrt{1}+\sqrt{4}=3\Leftrightarrow1+2=3\) " đúng nhé "
tích vào ních pain thiên đạo này nhé , đừng tích vào ních Pain zed
Lời giải:
ĐKXĐ: $\frac{2}{3}\leq x\leq 6$
PT $\Leftrightarrow 3(\sqrt{3x-2}-2)+x(\sqrt{6-x}-2)=2(2-x)$
$\Leftrightarrow (2-x)(2-\frac{x}{\sqrt{6-x}+2}+\frac{9}{\sqrt{3x-2}+2})=0$
Với $\frac{2}{3}\leq x\leq 6$ thì $2+\frac{9}{\sqrt{3x-2}+2}\geq \frac{7}{2}>3$ còn $\frac{x}{\sqrt{6-x}+2}\leq \frac{6}{2}=3$ nên biểu thức $2-\frac{x}{\sqrt{6-x}+2}+\frac{9}{\sqrt{3x-2}+2}>0$
$\Rightarrow 2-x=0$
$\Leftrightarrow x=2$ (tm)
Đề bài sai, phương trình này ko giải được (theo kiến thức phổ thông)
=>\(\dfrac{x^2-3x+6-x^2+3x-3}{\sqrt{x^2-3x+6}-\sqrt{x^2-3x+3}}=3\)
=>căn x^2-3x+6 - căn x^2-3x+3=1
Đặt x^2-3x+3=a
=>căn a+3-căn a=1
=>a+3+a-2căn a(a+3)=1
=>2căn a(a+3)=2a+3-1=2a+2
=>căn a(a+3)=a+1
=>a^2+3a=a^2+2a+1
=>a=1
=>x^2-3x+2=0
=>x=1 hoặc x=2