K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Sửa đề: \(x^2-2\left(m-1\right)x-2m-7=0\)

\(\text{Δ}=\left(2m-2\right)^2-4\left(-2m-7\right)\)

\(=4m^2-8m+4+8m+28\)

\(=4m^2+32>0\)

Do đó: Phương trình luôn có hai nghiệm phân biệt

\(M=\left(x_1+x_2\right)^2+4x_1x_2\)

\(=\left(2m-2\right)^2+4\left(-2m-7\right)\)

\(=4m^2-8m+4-8m-28\)

\(=4m^2-16m-24\)

\(=4m^2-16m+16-40\)

\(=\left(2m-4\right)^2-40\ge-40\)

Dấu '=' xảy ra khi m=2

14 tháng 5 2022

Sửa đề: x2−2(m−1)x−2m−7=0x2−2(m−1)x−2m−7=0

Δ=(2m−2)2−4(−2m−7)Δ=(2m−2)2−4(−2m−7)

=4m2−8m+4+8m+28=4m2−8m+4+8m+28

=4m2+32>0=4m2+32>0

Do đó: Phương trình luôn có hai nghiệm phân biệt

M=(x1+x2)2+4x1x2M=(x1+x2)2+4x1x2

=(2m−2)2+4(−2m−7)=(2m−2)2+4(−2m−7)

=4m2−8m+4−8m−28=4m2−8m+4−8m−28

=4m2−16m−24=4m2−16m−24

=4m2−16m+16−40=4m2−16m+16−40

=(2m−4)2−40≥−40=(2m−4)2−40≥−40

Dấu '=' xảy ra khi m=2

23 tháng 5 2021

\(\Delta=4\left(m+1\right)^2-4\left(2m-3\right)=4m^2+16>0\forall m\)

=> pt luôn có hai nghiệm pb

Theo viet có: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=2m-3\end{matrix}\right.\)

Có :\(P^2=\left(\dfrac{x_1+x_2}{x_1-x_2}\right)^2=\dfrac{4\left(m+1\right)^2}{\left(x_1+x_2\right)^2-4x_1x_2}\)

\(=\dfrac{4\left(m+1\right)^2}{4\left(m+1\right)^2-4\left(2m-3\right)}=\dfrac{4\left(m+1\right)^2}{4m^2+16}\)\(\ge0\)

\(\Rightarrow P\ge0\)

Dấu = xảy ra khi m=-1

23 tháng 10 2019

a. + Với  m = − 1 2   phương trình (1) trở thành x 2 − 4 x = 0 ⇔ x = 0 x = 4 .

+ Vậy khi  m = − 1 2  phương trình có hai nghiệm x= 0 và x= 4.

b. + Phương trình có hai nghiệm dương phân biệt khi 

                            Δ = 2 m + 5 2 − 4 2 m + 1 > 0 x 1 + x 2 = 2 m + 5 > 0 x 1 . x 2 = 2 m + 1 > 0

+ Ta có  Δ = 2 m + 5 2 − 4 2 m + 1 = 4 m 2 + 12 m + 21 = 2 m + 3 2 + 12 > 0 , ∀ m ∈ R

+ Giải được điều kiện  m > − 1 2  (*).

+ Do P>0 nên P đạt nhỏ nhất khi P 2  nhỏ nhất.

+ Ta có P 2 = x 1 + x 2 − 2 x 1 x 2 = 2 m + 5 − 2 2 m + 1 = 2 m + 1 − 1 2 + 3 ≥ 3     ( ∀ m > − 1 2 ) ⇒ P ≥ 3    ( ∀ m > − 1 2 ) .

và P = 3  khi m= 0 (thoả mãn (*)).

+ Vậy giá trị nhỏ nhất  P = 3  khi m= 0.

29 tháng 3 2018

thay m=2 vào ta được phương trình:

x2-3x-2=0 <bấm máy> 

* CM: delta=b2-4ac=(2m-1)2-4.1.(-m)= 4m2-4m+1+4m=4m2+1

ta thấy m2 >=0 <=> 4m2>=0 <=> 4m2+1>=1>0 <=> delta>0 Vậy phương trình luôn có 2 nghiệm phân biệt với mọi m.

* >=: lớn hơn hoặc bằng. <đề còn lại ghi k rõ nên mình k giúp được =))>

Δ=(2m-2)^2-4(-2m+5)

=4m^2-8m+4+8m-20=4m^2-16

Để PT có hai nghiệm phân biệt thì 4m^2-16>0

=>m>2 hoặc m<-2

x1-x2=-2

=>(x1-x2)^2=4

=>(x1+x2)^2-4x1x2=4

=>(2m-2)^2-4(-2m+5)=4

=>4m^2-8m+4+8m-20=4

=>4m^2=20

=>m^2=5

=>m=căn 5 hoặc m=-căn 5

25 tháng 5 2019

Chị quản lí ơi để phương trình có 2 nghiệm phân biệt thì \(\Delta>0\)!

25 tháng 5 2019

Quá dễ . số cần tìm là 10 . Đúng đấy , bài này mk làm rồi , chắc chắn 100% luôn !!!

NV
30 tháng 4 2021

Giả sử pt đã cho có 2 nghiệm

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1x_2=2m\end{matrix}\right.\)

\(\Rightarrow M=x_1+x_2-x_1x_2\)

\(\Rightarrow M=2m+2-2m\)

\(\Rightarrow M=2\) ko phụ thuộc m (đpcm)