Phân tích đa thức thành nhân tử :
a. \(a^3+4a^2-7a-10\)
b. \(\left(a^2+a\right)^2+4\left(a^2+a\right)-12\)
c. \(x^3-x^2-4x^2+8x-4\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(A=\left(x^2-2x\right)\left(x^2-2x-1\right)-6=\left(x^2-2x\right)^2-\left(x^2-2x\right)-6\)
\(=\left(x^2-2x+2\right)\left(x^2-2x+3\right)\)
b mk thấy nó sai đề sao ý
c) \(C=\left(x^2+x+4\right)^2+8x\left(x^2+x+4\right)+15x^2\)
\(=\left(x^2+x+4\right)^2+2.4x.\left(x^2+x+4\right)+16x^2-x^2\)
\(=\left(x^2+x+4+4x\right)^2-x^2\)
\(=\left(x^2+5x+4\right)^2-x^2\)
\(=\left(x^2+5x+4-x\right)\left(x^2+5x+4+x\right)=\left(x^2+4x+4\right)\left(x^2+6x+4\right)\)
b)(x2+x+1)(x2+x+2)-12
Đặt t=x2+x+1
t(t+1)-12=t2+t-12
=(t-3)(t+4)=(x2+x+1-3)(x2+x+1+4)
=(x2+x-2)(x2+x+5)
=(x-1)(x+2)(x2+x+5)
c)(x2+8x+7)(x2+8x+15)+15
Đặt t=x2+8x+7
t(t+8)+15=t2+8t+15
=(t+3)(t+5)
=(x2+8x+7+3)(x2+8x+7+15)
=(x2+8x+10)(x2+8x+22)
d)(x+2)(x+3)(x+4)(x+5)-24
=(x2+7x+10)(x2+7x+12)-24
Đặt t=x2+7x+10
t(t+2)-24=(t-4)(t+6)
=(x2+7x+10-4)(x2+7x+10+6)
=(x2+7x+6)(x2+7x+16)
=(x+1)(x+6)(x2+7x+16)
a/ Đặt x2 + 4x + 8 = a
Thì đa thức ban đầu thành
a2 + 3ax + 2x2 = (a2 + 2ax + x2) + (ax + x2)
= (a + x)2 + x(a + x) = (a + x)(a + 2x)
bài 11
a) \(x^2-xy+x\\ =x\left(x-y+1\right)\)
b)
\(x^2-2xy-4+y^2\\ =\left(x^2-2xy+y^2\right)-4\\ =\left(x-y\right)^2-4\\ =\left(x-y-2\right)\left(x-y+2\right)\)
c)
\(x^3-x^2-16x+16\\ =x^2\left(x-1\right)-16\left(x-1\right)\\ =\left(x-1\right)\left(x-4\right)\left(x+4\right)\)
bài 12
\(2x\left(x-5\right)-x\left(3+2x\right)=26\)
\(2x^2-10x-3x-2x^2=26\)
\(-13x=26\\ x=-2\)
b)
\(2\left(x+5\right)-x^2-5x=0\\ 2\left(x+5\right)-x\left(x+5\right)=0\\ \left(x+5\right)\left(2-x\right)=0\\ \left[{}\begin{matrix}x+5=0\\2-x=0\end{matrix}\right.\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)
b) \(B=\)ghi lại đề nha bn
Đặt \(x^2+4x-3=t\) ta có:
\(B=t^2-5xt+6x^2\)
\(B=t^2-2xt-3xt+6x^2\)
\(B=t\left(t-2x\right)-3x\left(t-2x\right)=\left(t-2x\right)\left(t-3x\right)\)
\(B=\left(x^2+4x-3-2x\right)\left(x^2+4x-3-3x\right)\)
\(B=\left(x^2+2x-3\right)\left(x^2+x-3\right)\)
bn làm tương tự câu c) cũng như vậy nha!!!
b. \(\left(a^2+a\right)+a\left(a^2+a\right)-12\)
<=>\(\left(x^3+3x^2-4\right)+\left(3x^2+9x-12\right)\)
<=>\(x\left(x^2+3x-4\right)+3\left(x^2+3x-4\right)\)
<=>\(\left(x^2+3x-4\right)\left(x+3\right)\)
<=>\(\left(x+3\right)\left(x^2+4x\right)-\left(x-4\right)\)
đóngmở ngoặc nhé mk ngại ghi lại
<=>(x+3)(x(x+4)-(x+4))
<=>(x+3)(x-1)(x+4)
kết pn fb mk nhé longtrangv@gmail.com
c) \(x^3-x^2-4x^2+8x-4\)
= \(x^3-x^2-4x^2+4x+4x-4\)
= \(x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)\)
= \(\left(x-1\right)\left(x^2-4x+4\right)\)
= \(\left(x-1\right)\left(x-2\right)^2\)