chứng minh rằng: A= (1986^2016-1)/(1000^2016-1) không thể là một số nguyên
CÁC BẠN GIÚP MÌNH NHA MAI PHẢI NỘP BÀI RÙI!!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
CMR:A=\(\frac{1986^{2016}-1}{1000^{2016}-1}\)không là số nguyên
+)Giả sử A=\(\frac{1986^{2016}-1}{1000^{2016}-1}\)là số nguyên
+)Ta có:1986\(⋮\)3=>19862016\(⋮\)3=>19862016-1\(⋮̸\)3(1)
+)Ta lại có:1000 chia 3 dư 1 3=>10002016chia 3 dư 1=>10002016-1\(⋮\)3(2)
Từ (1) và (2)
=>19862016-1\(⋮̸\)10002016-1
=>A=\(\frac{1986^{2016}-1}{1000^{2016}-1}\)không là số nguyên (trái với giả sử )
Vậy A=\(\frac{1986^{2016}-1}{1000^{2016}-1}\)không là số nguyên
Chúc bn học tốt
Dễ có:\(1986⋮3\Rightarrow1986^{2016}⋮3\Rightarrow1986^{2016}-1\) không chia hết cho 3
\(1000\) chia 3 dư 1\(\Rightarrow1000^{2010}\) chia 3 dư 1 \(\Rightarrow1000^{2010}-1⋮3\)
Do \(MS\) chia hết cho 3;\(TS\) không chia hết cho 3
\(\Rightarrow A=\frac{1986^{2016}-1}{1000^{2010}-1}\notin Z\)
CMR:A=\(\frac{1986^{2016}-1}{1000^{2010}-1}\)không là số nguyên
+)Giả sử :A=\(\frac{1986^{2016}-1}{1000^{2010}-1}\)là số nguyên
+)Ta thấy 1986\(⋮\)3=>19862016\(⋮\)3=>19862016-1\(⋮̸\)3(1)
+)Ta lại thấy :1000 chia 3 dư 1 =>10002010\(⋮̸\)3=>10002010-1\(⋮\)3(2)
Từ (1) và (2)
=>19862016-1\(⋮̸\)10002010-1
=>A=\(\frac{1986^{2016}-1}{1000^{2010}-1}\)không là số nguyên ( trái với giả sử )
Vậy :A=\(\frac{1986^{2016}-1}{1000^{2010}-1}\)không là số nguyên
Chúc bn học tốt
Ta có:\(1000\equiv1\left(mod3\right)\Rightarrow1000^{2016}\equiv1\left(mod3\right)\Rightarrow1000^{2016}-1\equiv0\left(mod3\right)\)
=>10002016-1 chia hết cho 3
\(1986\equiv0\left(mod3\right)\Rightarrow1986^{2016}\equiv0\left(mod3\right)\Rightarrow1986^{2016}-1\equiv-1\left(mod3\right)\)
=>19862016-1 không chia hết cho 3
\(A=\frac{1986^{2014}-1}{1000^{2014}-1}\) có mẫu số chia hết cho 3, tử số không chia hết cho 3=>tử số không chia hết cho mẫu số=>A không thể là số nguyên
Vì 1986 chia hết cho 3
=>19862016 chia hết cho 3
vậy 19862016 -1 không chia hết cho 3
Vì 1000 chia 3 dư 1
=>10002016 chia 3 dư 1
Vậy 10002016 -1 chia hết cho 3
Vì tử không chia hết cho 3 mà mẫu chia hết 3
=> A không thể là 1 số nguyên
do ngu