Rút gọn các tổng sau:
a) A = 2 - 2\(^2\) + 2\(^3\) - 2\(^4\) + ... + 2\(^{99}\) - 2\(^{100}\)
b) B = 1 + 2\(^2\) + 2\(^4\) + ... + 2\(^{98}\) + 2\(^{100}\)
c) C = 1 - 2\(^3\) + 2\(^6\) - 2\(^9\) + ... + 2\(^{60}\) - 2\(^{63}\) + 2\(^{69}\)
d) D = 1 + \(\dfrac{1}{3}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{3^4}\) + ... + \(\dfrac{1}{3^{100}}\)
e) E = 1 - \(\dfrac{1}{4}\) + \(\dfrac{1}{4^2}\) - \(\dfrac{1}{4^3}\) + ... + \(\dfrac{1}{4^{98}}\) - \(\dfrac{1}{4^{99}}\) + \(\dfrac{1}{4^{100}}\)
-Quy luật: Nhân mỗi vế của đẳng thức cho số thích hợp để tạo ra đẳng thức mới, khi cộng (hoặc trừ) mỗi vế của mỗi đẳng thức thì sẽ rút gọn bớt.
a) \(A=2-2^2+2^3-2^4+...+2^{99}-2^{100}\)
\(\Rightarrow2A=2^2-2^3+2^4-2^5+...+2^{100}-2^{101}\)
\(\Rightarrow2A+A=2^2-2^3+2^4-2^5+...+2^{100}-2^{101}+\left(2-2^2+2^3-2^4+...+2^{99}-2^{100}\right)\)
\(\Rightarrow A=-2^{101}+2\)
b,c) làm tương tự.
d) \(D=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\)
\(\Rightarrow3D=3+1+\dfrac{1}{3}+...+\dfrac{1}{3^{99}}\)
\(\Rightarrow3D-D=3+1+\dfrac{1}{3}+...+\dfrac{1}{3^{99}}-\left(1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow2D=3+\dfrac{1}{3^{100}}\)
\(\Rightarrow2D=\dfrac{3^{101}+1}{3^{100}}\Rightarrow D=\dfrac{3^{101}+1}{2.3^{100}}\)
e) làm tương tự nhưng đổi thành cộng.