Cho tam giác ABC cân tại A các đường cao BD và CE cắt nhau tại H Chứng minh AD = AE cho AB = 10 cm AD = 6 cm Tính khoảng cách từ điểm B đến cạnh AC biết Bac = 50 độ tính BC Gọi M là trung điểm của BC Chứng minh ba điểm A M N thẳng hàng.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔADB vuông tại Dvà ΔAEC vuông tại E có
AB=AC
góc BAD chung
=>ΔADB=ΔAEC
=>AD=AE
b: Xét ΔAEI vuông tại E và ΔADI vuông tại D có
AI chung
AE=AD
=>ΔAEI=ΔADI
=>góc EAI=góc DAI
=>AI là phân giác của góc BAC
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
d: AB=AC
IB=IC
=>AI là trung trực của BC
=>A,I,M thẳng hàng
Bài 2
gọi E là trung điểm của KB
Vì tam giác CKB có BM=MC ; BE=EK
=>EM//KC
Vì tam giác ENM có AN=AM ; KA//EM
=>EK=KN
Vì KN=KE=EB=>NK=1/2KB
a: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có
BC chung
\(\widehat{EBC}=\widehat{DCB}\)
Do đó: ΔEBC=ΔDCB
Suy ra: \(\widehat{HCB}=\widehat{HBC}\)
hay ΔHBC cân tại H
=>HB=HC
mà AB=AC
nên AH là đường trung trực của BC
=>A,H,M thẳng hàng
b: BC=16cm nên BM=CM=8cm
=>AM=6cm
a. Nối AM
Xét \(2\Delta:\Delta AMB\) và \(\Delta AMC\) có:
\(\left\{{}\begin{matrix}AM.chung\\AB=AC\left(gt\right)\\BM=BC\left(gt\right)\end{matrix}\right.\)
\(\Rightarrow\Delta AMB=\Delta AMC\left(c.c.c\right)\)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}\)
Mà: \(\widehat{BMC}=180^o\)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}=90^o\)
\(\Rightarrow AM.là.đường.cao\)
Mà H là giao của BD và CE
Vậy H là trực tâm của tam giác ABC
Vậy AH đi qua M
b. \(MC=16:2=8\left(cm\right)\)
Áp dụng định lý Pi - ta - go, suy ra:
\(AM^2+MC^2=AC^2\)
\(\Leftrightarrow AH=\sqrt{AC^2-MC^2}=\sqrt{10^2-8^2}=6\left(cm\right)\)
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
góc BAD chung
Do đó: ΔABD=ΔACE
Suy ra: AD=AE
b: \(BD=\sqrt{10^2-6^2}=8\left(cm\right)\)
d: Xét ΔHBC có \(\widehat{HBC}=\widehat{HCB}\)
nên ΔHBC cân tại H
=>HB=HC
hay H nằm trên đường trung trực của BC(1)
Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường trung trực của BC(2)
Từ (1) và (2) suy ra A,H,M thẳng hàng