CMR: với mọi n thuộc N thì hai số 2n+3 và 3m+4 là hai số nguyên tố cùng nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi d là UCLN của 3n+4 và 2n+3, suy ra:
3n+4 chia hết cho d ; 2n+3 chia hết cho d
+ Ta có : 2.(3n+4) chia hết cho d ( mình kí hiệu là dấu : nha )
=> 6n+8 : d (1)
Lại có : 3.(2n+3) :d
=> 6n+9 : d (2)
+ Từ 1 và 2 => 6n+9 - 6n - 8 :d
=> 1 : d
=> 3n+4 và 2n+3 nguyên tố cùng nhau
Phần b tương tự, kk cho mìnhh nha
Đặt \(\left(2n+1,4n+3\right)=d\).
Suy ra \(\hept{\begin{cases}2n+1⋮d\\4n+3⋮d\end{cases}}\Rightarrow\left(4n+3\right)-2\left(2n+1\right)=1⋮d\Rightarrow d=1\).
Do đó ta có đpcm.
a) Gọi \(\:ƯCLN\) của \(n+2;n+3\) là d \(\Rightarrow n+2⋮d;n+3⋮d\)
\(\Rightarrow\left(n+3\right)-\left(n+2\right)⋮d\Leftrightarrow1⋮d\Rightarrow d=1;-1\)
\(\Rightarrow n+2;n+3NTCN\)
b) Gọi \(\:ƯCLN\) \(2n+3;3n+5\) là d \(\Rightarrow2n+3⋮d;3n+5⋮d\)
\(\Rightarrow3\left(2n+3\right)⋮d\Rightarrow6n+9⋮d\) và \(2\left(3n+5\right)⋮d\Rightarrow6n+10⋮d\)
\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)
\(\Rightarrow2n+3;3n+5NTCN\)
Gọi ƯCLN(2n+3,4n+8)là d
Ta có :
2n+3 chia hết cho d
suy ra 4n+6 chia hết cho d
suy ra : (4n+8)-(4n+6)chia hết cho d
suy ra : 2 chia hết cho d
suy ra d thuộc Ư(2)
Ư(2)=1,2
Vì 2n+3 chia hết cho d,mà 3 lẻ,suy ra d lẻ
suy ra d=1
vậy ƯCLN(2n+3,4n+8)=d=1
vậy 2n+3 và 4n+8 là 2 số nguyên tố cùng nhau
tick nhé
Ai trả lời:nhanh nhất,đúng nhất,hay nhất,đầy đủ nhất thì mk k cho nha
Các bạn trả lời nhanh giùm mk
Cảm ơn các bạn
Gọi (2n + 1,6n + 5) = d (d \(\in\)N)
=> 2n + 1 chia hết cho d và 6n + 5 chia hết cho d
=> 3 . (2n + 1) chia hết cho d và 6n + 5 chia hết cho d
=> 6n + 3 chia hết cho d và 6n + 5 chia hết cho d
=> 6n + 5 - (6n + 3) chia hết cho d
hay 2 chia hết cho d => d \(\in\)Ư(2) => d \(\in\){-2;-1;1;2}
Mà d là lớn nhất nên d = 2
Ta thấy 6n + 5 ko chia hết cho 2 và 2n + 1 ko chia hết cho 2
=> (2n + 1,6n + 5) = 1
Vậy 2n + 1 và 6n + 5 là 2 số nguyên tố cùng nhau với mọi n thuộc N
Ủng hộ mk nha !!! ^_^
Gọi d là Ưcln của 2n + 1 và 6n + 5
Khi đó : 2n + 1 chia hết cho d và 6n + 5 chia hết cho d
<=> 3.(2n + 1) chia hết cho d và 6n + 5 chia hết cho d
=> 6n + 3 chia hết cho d và 6n + 5 chia hết cho d
=> (6n + 5) - (6n + 3) chia hết cho d => 2 chia hết cho d
Mà ưc của 2 là 1 => d = 1
VậY (đpcm_)
Gọi x là ƯC của 2.n+5 va 3.n +7
2.n+5 chia hết cho x=> 3{2n+5} chia hết cho x
3n+7 chia hết cho x => 2{3n+7} chia hết cho x
3{2n+5} - 2{3n+7chia hết cho x
6n+15 - 6n+14 chia hết cho x
=>1 chia hết cho x
Gọi ƯC(2n+5,3n+7)=d
Ta có: 2n+5 chia hết cho d=>3.(2n+5)=6n+15 chia hết cho d
3n+7 chia hết cho d=>2.(3n+7)=6n+14 chia hết cho d
=>6n+15-(6n+14) chia hết cho d
=>1 chia hết cho d
=>d=1
=>ƯC(2n+5,3n+7)=1
=>2n+5 và 3n+7 là 2 số nguyên tố cùng nhau
m ở đâu
Không biết thế này có đúng không nhưng mình vẫn muốn hỏi
Gọi d là WCLN(2n+3, 3m+4); n thuộc N
Ta có: 2n+3 chia hết cho d; 3m+4 chia hết cho d
3(2n+3) chia hết cho d; 2(3m+4) chia hết cho d
nên (6m+9-6n+8)
=> d chia hết cho 1
=> d=1