tìm tất cả cặp số nguyên dương a,b sao cho: ab=3(a-b)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì 34x5y chia hết cho 36 nên 34x5y chia hết cho 4,9
Để 34x5y chia hết cho 4 thì 5y chia hết cho 4 =>y=2;6
*)Nếu y=2 thì 34x5y có: 3+4+x+5+2=14+x mà để 34x5y chia hết cho 9 thì 14+x chia hết cho 9 =>x=4
*)Nếu y=6 thì 34x5y có: 3+4+x+5+6=18+x mà để 34x5y chia hết cho 9 thì 18+x chia hết cho 9 =>x=0;9
Vậy tất cả các cặp số (x;y) có thể tìm là : (4;2) ; (0;6) ; (9;6)
đổi pt thành : y^2 - (x^2)y + x^4 -81001 = 0
Lập denta của pt ẩn y ta được denta bằng : 324004 - 3 x^4.
Để pt có nghiệm y thì denta lớn hơn hoặc bằng 0
Từ đó suy ra 18 >= x >= -18
t i c k nhé!! 436565667676879867856735623626356562442516576678768987978
Ta có
n4 + 4 = n4 + 4n2 + 4 – 4n2
= (n2 + 2 )2 – (2n)2
= (n2 + 2 – 2n )(n2 + 2 + 2n)
Vì n4 + 4 là số nguyên tố nên n2 + 2 – 2n = 1 hoặc n2 + 2 + 2n = 1
Mà n2 + 2 + 2n > 1 vậy n2 + 2 – 2n = 1 suy ra n = 1
Thử lại : n = 1 thì 14 + 4 = 5 là số nguyên tố
Vậy với n = 1 thì n4 + 4 là số nguyên tố.
\(n+26=a^3\left(a\in N\cdot\right)\)
\(n-11=b^3\left(b\in N\cdot\right)\)
=>\(a^3-b^3=37\)
\(\left(a-b\right)\left(a^2+ab+b^2\right)=37\)
\(\Rightarrow\left(a-b\right)\&\left(a^2+ab+b^2\right)\) là ước của 37
Mà \(a^2-ab+b^2\ge a-b\ge0\)
\(\int^{a^2+ab+b^2=37}_{a-b=1}\Leftrightarrow\int^{a=b+1}_{\left(b+1\right)^2+b\left(b+1\right)+b^2=37}\Leftrightarrow\int^{a=b+1}_{3b^2+3b-36=0}\Leftrightarrow\int^{a=4}_{b=3}\)(vì a;b>0) thay hoặc a vào chỗ đặt rồi tự tìm nốt
\(\Rightarrow ab=3a-3b\Leftrightarrow ab+3b=3a\)
\(\Leftrightarrow b\left(a+3\right)=3a\Rightarrow b=\dfrac{3a}{a+3}\left(a\ne-3\right)\)
\(\Rightarrow b=\dfrac{3\left(a+3\right)-9}{a+3}=3-\dfrac{9}{a+3}\)
Để b là số nguyên thì
a+3 phải là ước của 9
\(\Rightarrow a+3=\left\{-9;-1;1;9\right\}\Rightarrow a=\left\{-12;-4;-2;6\right\}\)
\(b=\left\{4;12;-6;2\right\}\)
xin lỗi còn thiếu trường hợp \(a+3=\pm3\) bạn bổ xung và tính nốt nhé