K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2022

Ta có: \(\dfrac{x+y+z}{4}\ge\sqrt[4]{xyz}\)

Dấu "=" xảy ra khi \(x=y=z=\dfrac{1}{3}.1=\dfrac{1}{3}\)

BĐT Cauchy mở rộng nhé, đừng nghĩ anh làm Hoá không làm Toán mà ngu Toán nhé :), đây là BĐT Cauchy mở rộng, ở sách nâng cao có CM nhưng anh vứt đâu rồi

Với \(n\in N\text{*}\), ta luôn có BĐT:

\(\dfrac{a_1+a_2+a_3+...+a_{n-1}+a_n}{n}\ge\sqrt[n]{a_1a_2a_3...a_{n-1}a_n}\)

Dấu "=" xảy ra khi: \(a_1=a_2=a_3=...=a_{n-1}=a_n\)

hơ hơ e bt lèm mà e hỏi cho zuii thoi:v

30 tháng 11 2019

a, Áp dụng bất đẳng thức Holder cho 2 bộ số \(\left(x,y,z\right)\left(3;3;3\right)\) ta có:

\(\left(x+3\right)\left(y+3\right)\left(z+3\right)\ge\left(\sqrt[3]{xyz}+\sqrt[3]{3.3.3}\right)^3=\left(\sqrt[3]{xyz}+3\right)\)

\(\sqrt[3]{\left(x+3\right)\left(y+3\right)\left(z+3\right)}\ge3+\sqrt[3]{xyz}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z\)

\(\Rightarrow\sqrt{x}+\sqrt{y}+\sqrt{z}=3\sqrt{x}=\sqrt{2017}\)

\(\Rightarrow x=\frac{\sqrt{2017}}{3}\)

\(\Rightarrow\left(x,y,z\right)=\left(\frac{\sqrt{2017}}{3},\frac{\sqrt{2017}}{3},\frac{\sqrt{2017}}{3}\right)\)

P/s: Không chắc cho lắm ạ.

29 tháng 11 2019

Vũ Minh Tuấn, Hoàng Tử Hà, đề bài khó wá, Lê Gia Bảo, Aki Tsuki, Nguyễn Việt Lâm, Lê Thị Thục Hiền,

Học 24h, @tth_new, @Akai Haruma, Nguyễn Trúc Giang, Băng Băng 2k6

Help meeee, please!

thanks nhiều

13 tháng 7 2018

Aki Tsuki hattori heiji Akai Haruma

NV
11 tháng 2 2020

a/ Đơn giản là dùng phép thế:

\(x+2y+x+y+z=0\Rightarrow x+2y=0\Rightarrow x=-2y\)

\(x+y+z=0\Rightarrow z=-\left(x+y\right)=-\left(-2y+y\right)=y\)

Thế vào pt cuối:

\(\left(1-2y\right)^2+\left(y+2\right)^2+\left(y+3\right)^2=26\)

Vậy là xong

b/ Sử dụng hệ số bất định:

\(\left\{{}\begin{matrix}a\left(\frac{x}{3}+\frac{y}{12}-\frac{z}{4}\right)=a\\b\left(\frac{x}{10}+\frac{y}{5}+\frac{z}{3}\right)=b\end{matrix}\right.\)

\(\Rightarrow\left(\frac{a}{3}+\frac{b}{10}\right)x+\left(\frac{a}{12}+\frac{b}{5}\right)y+\left(\frac{-a}{4}+\frac{b}{3}\right)z=a+b\) (1)

Ta cần a;b sao cho \(\frac{a}{3}+\frac{b}{10}=\frac{a}{12}+\frac{b}{5}=-\frac{a}{4}+\frac{b}{3}\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{a}{3}+\frac{b}{10}=\frac{a}{12}+\frac{b}{5}\\\frac{a}{3}+\frac{b}{10}=-\frac{a}{4}+\frac{b}{3}\end{matrix}\right.\) \(\Rightarrow\frac{a}{2}=\frac{b}{5}\)

Chọn \(\left\{{}\begin{matrix}a=2\\b=5\end{matrix}\right.\) thay vào (1):

\(\frac{7}{6}\left(x+y+z\right)=7\Rightarrow x+y+z=6\)

4 tháng 12 2017

\(\left\{{}\begin{matrix}x+y+z=1\\x^2+y^2+z^2=1\\x^3+y^3+z^3=1\end{matrix}\right.\)

☘ Ta có:

\(yz=\dfrac{\left(y+z\right)^2-\left(y^2+z^2\right)}{2}\)

\(=\dfrac{\left(1-x\right)^2-\left(1-x^2\right)}{2}=x^2-x\)

☘ Thay vào phương trình thứ 3

\(\Rightarrow1=x^3+y^3+z^3=x^3+\left(y+z\right)^3-3yz\left(y+z\right)\)

\(=x^3+\left(1-x\right)^3-3\left(x^2-x\right)\left(1-x\right)\)

\(=1+3x^3-3x^2\)

\(\Rightarrow3x^2\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

⚠ Chia thành hai trường hợp, rồi tự giải tiếp nhé.

Nguồn: Ý tưởng xuất phát từ [Báo TTT - số 71 mục "Thi giải toán qua thư"]

⚠ Có thể có cách khác ngắn gọn, dễ hiểu hơn.

4 tháng 12 2017

✿ Another way ✿

☘ Ta có:

\(\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+xz\right)\)

\(\Rightarrow xy+z\left(x+y\right)=0\)

\(\Rightarrow xy=-z\left(x+y\right)=-z\left(1-z\right)=z^2-z\left(1\right)\)

☘ Mặt khác

\(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)

\(\Rightarrow xyz=0\left(2\right)\)

☘ Thay (1) vào (2)

\(\Rightarrow z\left(z^2-z\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}z=0\\z=1\end{matrix}\right.\)

⚠ Cũng chia thành hai trường hợp rồi giải tiếp nhé.

22 tháng 11 2017

\(x^4+y^4+z^4\ge x^2y^2+y^2z^2+z^2x^2\ge xyz\left(x+y+z\right)=xyz\)

Dấu = xảy ra khi \(x=y=z=\dfrac{1}{3}\)

6 tháng 9 2019

Có: $x^4+y^4\geq 2x^2y^2\Rightarrow x^4+y^4+z^4\geq x^2y^2+y^2z^2+z^2x^2$

Lại có: $x^2y^2+y^2z^2\geq 2xzy^2\Rightarrow x^2y^2+y^2z^2+z^2x^2\geq xyz(x+y+z)=xyz$

Vậy $\Rightarrow x^4+y^4+z^4\geq xyz$

Dấu = có khi: $x=y=z=\dfrac{1}{3}$

NV
20 tháng 1 2019

\(\left\{{}\begin{matrix}x^4+y^4\ge2x^2y^2\\y^4+z^4\ge2y^2z^2\\x^4+z^4\ge2x^2z^2\end{matrix}\right.\) \(\Rightarrow x^4+y^4+z^4\ge x^2y^2+y^2z^2+x^2z^2\)

Lại có:

\(\left\{{}\begin{matrix}x^2y^2+y^2z^2\ge2xy^2z\\x^2y^2+x^2z^2\ge2x^2yz\\y^2z^2+x^2z^2\ge2xyz^2\end{matrix}\right.\) \(\Rightarrow x^2y^2+y^2z^2+x^2z^2\ge xy^2z+x^2yz+xyz^2\)

\(\Rightarrow x^2y^2+y^2z^2+x^2z^2\ge xyz\left(x+y+z\right)=xyz\)

\(\Rightarrow x^4+y^4+z^4\ge xyz\)

Dấu "=" xảy ra khi \(x=y=z=\dfrac{1}{3}\)

\(\Rightarrow\) Hệ có nghiệm duy nhất \(\left(x;y;z\right)=\left(\dfrac{1}{3};\dfrac{1}{3};\dfrac{1}{3}\right)\)