\(\left(\frac{1}{4}-1\right)\left(\frac{1}{5}-1\right)...\left(\frac{1}{2000}-1\right)\left(\frac{1}{2001}-1\right)\)tính nhanh
giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(1/4-1).(1/5-1).....(1/2000-1).(1/2001-1)
=(-3/4).(-4/5).(-5/6).....(-1999/2000).(-2000/2001)
=-3.-4.-5....-1999.-2000/4.5.6...2000.2001
=-3/2001
a) tạm bỏ số 1 ra => có 2012 số hạng=> có 1006 cặp =(-1)
=> A=1+-(-1).1006=-1005
a)Ta có:
\(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)....\left(\frac{1}{98^2}-1\right)\left(\frac{1}{99^2}-1\right)\)
\(=\left(\frac{1}{2.2}-1\right)\left(\frac{1}{3.3}-1\right)\left(\frac{1}{4.4}-1\right)....\left(\frac{1}{98.98}-1\right)\left(\frac{1}{99.99}-1\right)\)
\(=\left(-\frac{3}{2.2}\right).\left(-\frac{8}{3.3}\right).\left(-\frac{15}{4.4}\right)...\left(-\frac{9603}{98.98}\right).\left(-\frac{9800}{99.99}\right)\)
\(=\left[\left(-1\right).\left(-1\right).\left(-1\right)...\left(-1\right)\right].\frac{3}{2.2}.\frac{8}{3.3}.\frac{15}{4.4}...\frac{9603}{98.98}.\frac{9800}{99.99}\)
|------------------------98 số -1--------------------|
\(=\left(-1\right)^{98}.\frac{1.3}{2.3}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{95.97}{98.98}.\frac{98.100}{99.99}\)
\(=\frac{1.3}{2.3}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{95.97}{98.98}.\frac{98.100}{99.99}\)
\(=\frac{1.3.2.4.3.5...95.97.98.100}{2.2.3.3.4.4...98.98.99.99}\)
Ta sẽ rút gọn các thừa số chung ở tử và mẫu
\(=\frac{1.100}{2.99.99}\)
\(=\frac{50}{9801}\)
Vậy \(A=\frac{50}{9801}\)
cho mik hỏi bước 3 chỗ \(\frac{3}{2.2}\)sai o duoi lai la\(\frac{3}{2.3}\)vay
\(\frac{1}{x+2000}-\frac{1}{x+2007}=\frac{7}{8}\)
\(\frac{8\left(x+2007\right)}{8\left(x+2000\right)\left(x+2007\right)}-\frac{8\left(x+2000\right)}{8\left(x+2000\right)\left(x+2007\right)}=\frac{7\left(x+2000\right)\left(x+2007\right)}{8\left(x+2000\right)\left(x+2007\right)}\)
\(8x+8.2007-8x+8.2000=7\left(x^2+4007x+2000.2007\right)\)
\(8.7-7\left(x^2+4007x+2000.2007\right)=0\)
\(7\left(8-x^2-4007x-2000.2007\right)=0\)
\(8-x^2-4007x-2000.2007=0\)
\(x^2+4007x+4013992=0\)
\(\left(x^2+2008x\right)+\left(1999x+4013992\right)=0\)
\(\left(x+2008\right)\left(x+1999\right)=0\)
\(\hept{\begin{cases}x=-2008\\x=-1999\end{cases}}\)
\(\frac{1}{\left(x+2000\right)\left(x+2001\right)}+\frac{1}{\left(x+2001\right)\left(x+2002\right)}+\frac{1}{\left(x+2006\right)\left(x+2007\right)}=\frac{7}{8}\)
\(\frac{1}{x+2000}-\frac{1}{x+2001}+\frac{1}{x+2001}-\frac{1}{x+2002}+...+\frac{1}{x+2006}-\frac{1}{x+2007}=\frac{7}{8}\)
\(\frac{1}{x+2000}-\frac{1}{x+2007}=\frac{7}{8}\)
Áp dụng \(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\) rút gọn rồi quy đồng làm nốt
\(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)
=> \(\frac{1}{x+2000}-\frac{1}{x+2001}+\frac{1}{x+2001}-\frac{1}{x+2002}+....+\frac{1}{x+2006}-\frac{1}{x+2007}=\frac{7}{8}\)
<=> \(\frac{1}{x+2000}-\frac{1}{x+2007}=\frac{7}{8}\)
<=> \(\frac{7}{\left(x+2000\right)\left(x+2007\right)}=\frac{7}{8}\Leftrightarrow\left(x+2000\right)\left(x+2007\right)=8\)
=> x = -1999 hoặc x = - 2008
(x+4/2000 + 1)+(x+3/2001 + 1) = (x+2/2002 + 1)+(x+1/2003)+1
(x+2004/2000) + (x+2004/2001) = (x+2004/2002) + (x+2004/2003)
(x+2004).(1/2000+1/2001) = (x+2004).(1/2002+1/2003)
+ Với x+2004=0 suy ra x=-2004. Ta có 0.(1/2000+1/2001)=0.(1/2002+1/2003), đúng
+ Với x+2004 khác 0 thì (x+2004).(1/2000+1/2001) = (x+2004).(1/2002+1/2003)
1/2000+1/2001 = 1/2002+1/2003, vô lí vì 1/2000+1/2001 > 1/2002+1/2003
Vậy x=-2004
\(PT\Leftrightarrow\frac{x+4+2000}{2000}+\frac{x+3+2001}{2001}=\frac{x+2+2002}{2002}+\frac{x+1+2003}{2003}\)
<=> \(\frac{x+2004}{2000}+\frac{x+2004}{2001}=\frac{x+2004}{2002}+\frac{x+2004}{2003}\)
<=> \(\left(x+2004\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)
<=> x + 2004 = 0
<=> x = -2004.
\(\left(\frac{x+4}{2000}+1\right)+\left(\frac{x+3}{2001}+1\right)=\left(\frac{x+2}{2002}+1\right)+\left(\frac{x+1}{2003}+1\right)\)
\(\frac{x+2004}{2000}+\frac{x+2004}{2001}-\frac{x+2004}{2002}-\frac{x+2004}{2003}=0\)
\(\left(x+2004\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)
\(x+2004=0\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\ne0\right)\)
\(\Rightarrow x=-2004\)