K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2016

99 * 99 + 99 * 1 = 99 * 100 = 9900 Chúc bn học tốt ^_^

27 tháng 10 2016

99.99+99.1

=99.(99+1)

=99.100

=9900

28 tháng 4 2019

Ta có: \(n.n!=\left(n+1-1\right).n!=\left(n+1\right)!-n!\)

Suy ra \(A=\left(2!-1!\right)+\left(3!-2!\right)+...+\left(100!-99!\right)\)\(=100!-1!\)

Vậy.... (chắc hết rút gọn được rồi nhỉ)

7 tháng 1 2022

Có số số hạng là: (99,99-11,11):1,01+1=89

Tổng của dãy số là: (99,99 + 11,11) x 89 : 2 = 4943,95

Đ/S: 4943,95

17 tháng 10 2016

Ta thấy 1.1! + 1! = 2.1! = 2!

            2.2! + 2! = 3.2! = 3!

                  ....

Vì vậy ta có: S + 1! + 2! + 3! + ... + 100! = (1.1! + 1!) + (2.2!+2!) + ... + (100.100! + 100!) = 2! + 3! + 4! + ... + 100! + 101!

                   \(\Rightarrow S+1!=101!\Rightarrow S=101!-1.\)

17 tháng 10 2016

Ta có công thức thu gọn : \(n.n!=n!.\left(n+1-1\right)=\left(n+1\right)!-n!\)

Áp dụng với n = 1,2,...,100 sẽ được kết quả giống như cô Huyền.

15 tháng 7 2015

\(\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-.....-\frac{1}{3.2}-\frac{1}{2.1}\)

=\(\frac{1}{100}-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\right)\)

=\(\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{99}-\frac{1}{100}\right)\)

=\(\frac{1}{100}-\left(1-\frac{1}{100}\right)\)

=\(\frac{1}{100}-\frac{99}{100}\)

=\(\frac{-49}{50}\)

26 tháng 3 2019

338350 nhé bạn