tim so du: khi 22^22+ 55^55 chia cho 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(22\equiv1\left(mod7\right)\Leftrightarrow22^{22}\equiv1\left(mod7\right)\)(1)
Mặt khác \(55\equiv6\left(mod7\right)\Leftrightarrow55^{55}\equiv6^{55}\left(mod7\right)\)
Mà \(6^2\equiv1\left(mod7\right)\)(2)
tách: \(6^{55}=6^{2.27+1}=\left(6^2\right)^{27}.6\equiv1^{27}.6=6\)(từ (2) ) (3)
Từ (1) và (3) suy ra \(22^{22}+55^{55}\) chia 7 dư 0
2) Ta có:
\(3^6\Leftrightarrow1\left(mod7\right)\)
tách: \(3^{1993}=3^{6.332+1}=\left(3^6\right)^{332}.3\equiv1^{332}.3=3\)(mod 7)
Vậy \(3^{1993}\) chia 7 dư 3
22 mod 7=1
55 mod 7=6
6^1 mod 7=6
6^2mod 7=1
6^55=6.6^(2*27)=6.(6^2)^27
6^5 mod 7=6
1+6=7
Ds:
so du=0