Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thang vuông tại A và B, Kẻ \(SA\) vuông góc với \(mp\left(ABCD\right)\). Biết rằng \(AB=BC=a\), \(AD=2a\) góc giữa \(SB\) và \(mp\left(ABCD\right)\) bằng \(45^0\)
a) Chứng minh rằng BC vuông góc với SB, và \(mp\left(SCD\right)\perp mp\left(SAC\right)\)
b) Gọi \(mp\left(\alpha\right)\) là mặt phẳng đi qua A và vuông góc với SC. Xác định thiết diện của hình chóp \(S.ABCD\) và \(mp\left(\alpha\right)\). Tính diện tích của thiết diện đó theo \(a\).
P/s: Em xin nhờ quý thầy cô giáo và các bạn yêu toán trên toàn quốc giúp em ý b với ạ
Em cám ơn nhiều lắm ạ!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp CD\\CD\perp AD\left(gt\right)\end{matrix}\right.\) \(\Rightarrow CD\perp\left(SAD\right)\)
Mà \(CD=\left(SCD\right)\cap\left(ABCD\right)\)
\(\Rightarrow\widehat{SDA}\) là góc giữa (SCD) và (ABCD)
\(tan\widehat{SDA}=\dfrac{SA}{AD}=\sqrt{3}\Rightarrow\widehat{SDA}=60^0\)
b.
Gọi E là giao điểm AC và DI
I là trung điểm AB \(\Rightarrow AI=\dfrac{1}{2}AB=a\Rightarrow AI=DC\)
\(\Rightarrow AICD\) là hình bình hành
Mà \(\widehat{A}=90^0\Rightarrow AICD\) là hình chữ nhật
\(AI=AD=a\) (hai cạnh kề bằng nhau) \(\Rightarrow AICD\) là hình vuông
\(\Rightarrow AC\perp DI\) tại E
Lại có \(SA\perp\left(ABCD\right)\Rightarrow SA\perp DI\Rightarrow DI\perp\left(SAE\right)\)
Mà \(DI=\left(SDI\right)\cap\left(ABCD\right)\Rightarrow\widehat{SEA}\) là góc giữa (SDI) và (ABCD)
\(AE=\dfrac{1}{2}AC=\dfrac{1}{2}\sqrt{AD^2+CD^2}=\dfrac{a\sqrt{2}}{2}\)
\(\Rightarrow tan\widehat{SEA}=\dfrac{SA}{AE}=\dfrac{\sqrt{6}}{2}\Rightarrow\widehat{SEA}\approx50^046'\)
\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp CD\\CD\perp AD\end{matrix}\right.\) \(\Rightarrow CD\perp\left(SAD\right)\Rightarrow\left(SCD\right)\perp\left(SAD\right)\)
\(AC=\sqrt{AD^2+CD^2}=a\sqrt{2}\)
\(BC=\sqrt{BE^2+CE^2}=a\sqrt{2}\)
\(\Rightarrow AC^2+BC^2=AB^2\Rightarrow AC\perp BC\)
\(\Rightarrow BC\perp\left(SAC\right)\Rightarrow BC\perp AH\Rightarrow AH\perp\left(SBC\right)\)
b.
\(CD\perp\left(SAD\right)\Rightarrow\widehat{SDA}\) là góc giữa (SCD) và (ABCD)
\(\Rightarrow\widehat{SDA}=30^0\Rightarrow SA=AD.tan30^0=\dfrac{a\sqrt{3}}{3}\)
Ta có: \(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp AD\\AD\perp AB\end{matrix}\right.\) \(\Rightarrow AD\perp\left(SAB\right)\)
Qua S kẻ đường thẳng d song song AD
Do \(AD||CE\) \(\Rightarrow\) d là giao tuyến (SAD) và (SCE)
Mà \(d\perp\left(SAB\right)\Rightarrow\widehat{ASE}\) là góc giữa (SAD) và (SCE)
\(AE=\dfrac{AB}{2}=a\)
\(tan\widehat{ASE}=\dfrac{AE}{SA}=\sqrt{3}\Rightarrow\widehat{ASE}=60^0\)
Đề bài thiếu chi tiết định dạng điểm S nên không giải được (ví dụ phải thêm SA vuông góc mặt đáy hoặc gì đó tương tự)
1.
\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp AB\\AD\perp AB\end{matrix}\right.\) \(\Rightarrow AB\perp\left(SAD\right)\)
\(\Rightarrow\widehat{SBA}\) là góc giữa SB và (SAD)
\(tan\widehat{SBA}=\dfrac{SA}{AB}=\sqrt{3}\Rightarrow\widehat{SBA}=60^0\)
2.
\(SA\perp\left(ABC\right)\Rightarrow\left\{{}\begin{matrix}SA\perp AB\\SA\perp AC\end{matrix}\right.\) \(\Rightarrow\) các tam giác SAB và SAC vuông
\(\left\{{}\begin{matrix}SA\perp\left(ABC\right)\Rightarrow SA\perp BC\\BC\perp AB\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAB\right)\Rightarrow BC\perp SB\)
\(\Rightarrow\) Tam giác SBC vuông
Vậy tứ diện có 4 mặt đều là tam giác vuông (ABC hiển nhiên vuông theo giả thiết)
3.
a.
\(\left\{{}\begin{matrix}SA\perp\left(ABC\right)\Rightarrow SA\perp BC\\BC\perp AC\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAC\right)\)
b.
Gọi M là trung điểm BC \(\Rightarrow IM||AC\)
\(\Rightarrow AC||\left(SIM\right)\Rightarrow d\left(AC;SI\right)=d\left(AC;\left(SIM\right)\right)=d\left(A;\left(SIM\right)\right)\)
Qua A kẻ đường thẳng song song BC cắt IM kéo dài tại K
\(\Rightarrow IM\perp AK\Rightarrow IM\perp\left(SAK\right)\)
Trong mp (SAK), kẻ AH vuông góc SK
\(\Rightarrow AH\perp\left(SIM\right)\Rightarrow AH=d\left(A;\left(SIM\right)\right)\)
\(AK=CM=\dfrac{b}{2}\)
\(\dfrac{1}{AH^2}=\dfrac{1}{SA^2}+\dfrac{1}{AK^2}\Rightarrow AH=\dfrac{SA.AK}{\sqrt{SA^2+AK^2}}=\dfrac{\dfrac{h.b}{2}}{\sqrt{h^2+\dfrac{b^2}{4}}}=\dfrac{bh}{\sqrt{b^2+4h^2}}\)
B là khẳng định sai
\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp CD\\AD\perp CD\left(gt\right)\end{matrix}\right.\) \(\Rightarrow CD\perp\left(SAD\right)\)
\(CD=\left(SCD\right)\cap\left(BCD\right)\)
\(\Rightarrow\widehat{SDA}\) là góc giữa (SDC) và (BCD)
\(tan\widehat{SDA}=\dfrac{SA}{AD}=\sqrt{2}\Rightarrow\widehat{SDA}\approx54^044'\)