cho tam giác DEF vuông tại D kẻ đường phân giác EM của góc E (M thuộc DF) đường thẳng đi qua D và vuông góc với EM cắt EF tại K a) chứng minh ED=EK b) chứng minh EM là đường trung trực của DK c) so sánh MF và MK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi K là giao điểm của EI và DM
Xét \(\Delta EKD\)và \(\Delta EKM\)có :
\(\widehat{E}_1=\widehat{E}_2\)( vì EI là tia phân giác )
\(EI\): Cạnh chung
\(\widehat{EKD}=\widehat{EKM}=90^o\)( GT)
Do đó : Tam giác vuông EKM = Tam giác vuông EKM
\(\Rightarrow ED=EM\)( cặp cạnh tương ứng )
b)
Xét \(\Delta EDI\)và \(\Delta EMI\)có :
\(ED=EM\)( câu a )
\(\widehat{E}_1=\widehat{E_2}\)( vì phân giác )
\(EI:\)Cạnh chung
Do đó : Tam giác EMI = tam giác EDI (c.g.c )
\(\Rightarrow\widehat{EDI}=\widehat{EMI}\)( cặp góc tương ứng )
Mà \(\widehat{EDI}=90^o\)
\(\Rightarrow\widehat{EMI}=90^o\)
\(\Rightarrow\Delta EMI\)là tam giác vuông ( đpcm)
c)
Vì \(\widehat{EMI}=90^o\)( câu b )
\(\Rightarrow\widehat{IMF}=90^o\)
Xét tam giác IMF ta có :
\(\widehat{IMF}=90\)
=> IF là cạnh lớn nhất ( cạnh đối diện với góc vuông )
\(\Rightarrow IF>IM\)
Mà \(IM=ID\)( Vì tam giác EDI = tam giác EMI )
\(\Rightarrow IF>ID\)
c ) Áp dụng t/c đường đồng quy .
Câu 1: giống bài vừa nãy t làm cho bạn rồi!
Câu 2:
vì 2 tam giác đó = nhau => KE=KF, mà DE=DF => DK là trung trực của EF (ĐPCM)
Câu 3 :
sửa đề chút nha : EF là tia phân giác góc DEH
ta có EH//DF => \(\widehat{DFE}=\widehat{FEH}\) (so lr trong)
mà 2 tam giác kia = nhau (câu a) =>\(\widehat{DFE}=\widehat{HEF}\)
=>\(\widehat{HEF}=\widehat{DEF}\) => EF là tia phân giác góc DEF (ĐPCM)
a: Xét ΔEDA vuông tại D và ΔEBA vuông tại B có
EA chung
\(\widehat{DEA}=\widehat{BEA}\)
Do đó: ΔEDA=ΔEBA
b: Ta có: ΔEDA=ΔEBA
nên DA=BA
c: Ta có: ΔEDA=ΔEBA
nên ED=EB
hay E nằm trên đường trung trực của DB(1)
Ta có: AB=AD
nên A nằm trên đường trung trực của DB(2)
Từ (1) và (2) suy ra AE là đường trung trực của DB
a: Xet ΔDEN và ΔFEN có
ED=EF
góc DEN=góc FEN
EN chung
=>ΔDEN=ΔFEN
=>ND=NF
=>ΔNDF cân tại N
b: ΔDEN=ΔNFE
=>góc NFE=90 độ
=>NF vuông góc EF
c: Xét ΔDEP có
DF là trung tuyến
DF=EP/2
=>ΔDEP vuông tại D
a: Xét ΔEDK có
EM là đường cao
EM là đường phân giác
Do đó: ΔEDK cân tại E
b: Xét ΔEDM và ΔEKM có
ED=EK
\(\widehat{DEM}=\widehat{KEM}\)
EM chung
DO đó: ΔEDM=ΔEKM
Suy ra: DM=DK
mà ED=EK
nên EM là đường trung trực của DK