cho tam giác abc vuông tại a có ab=3cm ac=4cm kẻ đường cao AH a,chứng minh tam giác abc đồng dạng tam giác hba. từ đó suy ra ab^2=bc x hb/ b,tia phân giác của góc abc cắt ac tại n tính diện tích của tam giác abn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét tam giác ABC và tam giác HBA có
góc BAC=góc AHB=90 độ
góc B chung
suy ra tam giác ABC đồng dạng với tam giác HBA
suy ra AB phần HB = BC phần AB
tự kẻ hình
a, xét tam giác ABC và tam giác HBA có : góc B chung
góc BAC = góc BHA = 90
=> tam giác ABC đồng dạng với tam giác HBA (g-g)
=> AB/BH = AC/AH
=> AB.AH = BH.AC
b, xét tam giác BAH vuông tại H => HB^2 + HA^2 = AB^2 (Pytago)
BH = 3; AB = 5(gt)
=> 3^2 + AH^2 = 5^2
=> AH^2 = 16
=> AH = 4 do AH > 0
xét tam giác ABH có : BI là pg của góc ABH (gt)
=> AI/AB = IH/BH (tính chất)
=> AI+IH/AB+BH = AI/AB = IH/BH
=> AH/AB + BH = AI/AB = IH/BH
có: AH = 4; AB = 5; BH = 3
=> 4/3+5 = AI/5 = IH/3
=> AI/5 = IH/3 = 1/2
=> AI = 5/2 và IH = 3/2
c, góc CAH = 90 - góc HAB
góc HBA = 90 - góc HAB
=> góc CAH = góc HBA
xét tam giác AHC và tam giác BHA có: góc AHC = góc BHA = 90
=> tam giác AHC đồng dạng với tam giác BHA (g-g)
=> AC/AB = AH/HB
=> AC/AH = AB/HB
BI là pg của tam giác AHB => AI/AH = AB/AB
CK là pg của tam giác AHC => CK/KH = AC/AH
=> AI/AH = CK/KH
=> KI // AC
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
Do đó: ΔHBA\(\sim\)ΔABC
b: \(\dfrac{S_{HBA}}{S_{ABC}}=\left(\dfrac{BA}{BC}\right)^2=\dfrac{9}{25}\)
c: \(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=9.6\left(cm\right)\)
\(BH=\dfrac{AB^2}{BC}=7.2\left(cm\right)\)
CH=BC-BH=12,8(cm)
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{B}\) chung
Do đó: ΔABC\(\sim\)ΔHBA
Suy ra: AB/HB=BC/BA
=>BH/AB=BC/BA(1)
hay \(AB^2=BH\cdot BC\)
Câu b đề sai rồi bạn
a, Xét tam giác ABC và tam giác HBA ta có :
^BAC = ^AHB = 900
^B _ chung
Vậy tam giác ABC ~ tam giác HBA ( g.g )
c, tam giác ABC vuông tại A, có đường cao AH
Áp dụng định lí Pytago cho tam giác ABC vuông tại A
\(AB^2+AC^2=BC^2\Rightarrow BC^2=36+64=100\Rightarrow BC=10\)cm
Ta có : \(\dfrac{AC}{AH}=\dfrac{BC}{AB}\)( cặp tỉ số đồng dạng ý a )
\(\Rightarrow\dfrac{8}{AH}=\dfrac{10}{6}\Rightarrow AH=\dfrac{48}{10}=\dfrac{24}{5}\)cm
d, phải là cắt AC nhé, xem lại đề nhé bạn
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
DO đó: ΔABC\(\sim\)ΔHBA
Suy ra: AB/HB=BC/BA
hay \(AB^2=HB\cdot BC\)
b: \(\widehat{BMH}+\widehat{HBM}=90^0\)
\(\widehat{BNA}+\widehat{ABN}=90^0\)
mà \(\widehat{ABN}=\widehat{HBM}\)
nên \(\widehat{BMH}=\widehat{BNA}\)
a: XétΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
DO đó: ΔABC\(\sim\)ΔHBA
b: Ta có: ΔABC\(\sim\)ΔHBA
nên BA/BH=BC/BA
hay \(BA^2=BH\cdot BC\)
còn tính diện tích nx bn ơi