K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2016

gộp 1 tổng 3 số rồi làm nha mình ko chỉ thêm đâu

26 tháng 10 2016

A = \(4^0\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...+4^{57}\left(1+4+4^2\right)\)

A = \(21\left(4^0+4^3+...+4^{57}\right)\) chia hết cho 21

Hình như số cuối phải là 4^59 chứ nhỉ ??

26 tháng 10 2016

4^59 ạ,cj giải lại cho em đc ko??

17 tháng 12 2021

A=1+4+4^2+...+4^59A=1+4+4^2+...+4^59

A=(1+4)+(4^2+4^3)+...+(4^58+4^59)A=(1+4)+(4^2+4^3)+...+(4^58+4^59)

A=(1+4)+4^2(1+4)+...+4^58(1+4)A=(1+4)+4^2(1+4)+...+4^58(1+4)

A=5+4^2.5+...+4^58.5A=5+4^2.5+...+4^58.5

A=5(1+4^2+...+4^48)A=5(1+4^2+...+4^58)

A=5(1+4^2+...+4^58) chia hết cho 5
vậy A chia hết cho 5

A=1+4+4^2+...+4^59A=1+4+4^2+...+4^59

A=(1+4+4^2)+(4^3+4^4+4^5)+...+(4^57+4^58+4^59)A=(1+4+4^2)+(4^3+4^4+4^5)+...+(4^57+4^58+4^59)

A=(1+4+4^2)+4^3(1+4+4^2)+...+4^57(1+4+4^2)A=(1+4+4^2)+4^3(1+4+4^2)+...+4^57(1+4+4^2)

A=21+4^3.21+...+4^57.21A=21+4^3.21+...+4^57.21

A=21(1+4^3+...+4^57)A=21(1+4^3+...+4^57)

A=21(1+4^3+...+4^57) chia hết cho 21
vậy A chia hết cho 21
mik làm xong rồi nhớ k cho mik nha mik cảm ơn

17 tháng 12 2021

A=1+4+42+...+459A=1+4+42+...+459

A=(1+4)+(42+43)+...+(458+459)A=(1+4)+(42+43)+...+(458+459)

A=(1+4)+42(1+4)+...+458(1+4)A=(1+4)+42(1+4)+...+458(1+4)

A=5+42.5+...+448.5A=5+42.5+...+448.5

A=5(1+42+...+448)A=5(1+42+...+448)

⇒A⋮5

A=1+4+42+...+459A=1+4+42+...+459

A=(1+4+42)+(43+44+45)+...+(457+458+459)A=(1+4+42)+(43+44+45)+...+(457+458+459)

A=(1+4+42)+43(1+4+42)+...+447(1+4+42)A=(1+4+42)+43(1+4+42)+...+447(1+4+42)

A=21+43.21+...+447.21A=21+43.21+...+447.21

A=21(1+43+...+447)A=21(1+43+...+447)

⇒A⋮21
k cho mik đi mik cảm ơn

29 tháng 10 2018

Chia hết cho 5

(1+4)+(4^2+4^3)+...+(4^58+4^59)

=5+4^2(1+4)+...+4^58(1+4)

=5+4^2.5+...+4^58.5

=5(1+4^2+...+4^58)chia hết cho 5

Chia hết cho 21;85 làm tương tự 

Chia hết cho 21 nhóm 3 số nhé

Chia hết cho 85 nhóm 4 số nhé 

16 tháng 10 2016

4A=4+4^2+4^3+.....+4^60

4A-A=(4+4^2+...+4^60)-(1+4+4^2+...+4^59)

3A=4^60-1

A=\(\frac{4^{60}-1}{3}\)

4 tháng 8 2017

e hình như bạn giải lạc đề rồi

8 tháng 8 2017

\(A=1+4+4^2+...+4^{58}+4^{59}\)

\(A=\left(1+4\right)+\left(4^2+4^3\right)+...+\left(4^{58}+4^{59}\right)\)

\(A=\left(1+4\right)+4^2.\left(1+4\right)+...+4^{58}.\left(1+4\right)\)

\(A=5+4^2.5+...+4^{58}.5\) 

\(A=5.\left(1+4^2+...+4^{58}\right)\)\(⋮\) \(5\)

Vậy \(A=1+4+4^2+...+4^{58}+4^{59}\) chia hết cho 5.

.

.

\(A=1+4+4^2+...+4^{58}+4^{59}\)

\(A=\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)+...+\left(4^{56}+4^{57}+4^{58}\right)\)

\(A=21+4^3.\left(1+4+4^2\right)+...+4^{57}.\left(1+4+4^2\right)\)

\(A=21+4^3.21+...+4^{57}.21\)

\(A=21.\left(1+4^3+...+4^{57}\right)\) \(⋮\) \(21\)

Vậy  \(A=1+4+4^2+...+4^{58}+4^{59}\)  chia hết cho 21.

( Số 21 là do tổng của \(\left(1+4+4^2\right)\)cộng thành nha  )

4 tháng 10 2021

\(A=1+4+4^2+...+4^{2012}=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...+4^{2010}\left(1+4+4^2\right)\)

\(=21+21.4^3+...+21.4^{2010}=21\left(1+4^3+...+4^{2010}\right)⋮21\)

\(B=1+7+7^2+...+7^{101}=\left(1+7\right)+7^2\left(1+7\right)+...+7^{100}\left(1+7\right)\)

\(=8+7^2.8+...+7^{100}.8=8\left(1+7^2+...+7^{100}\right)⋮8\)