cho hình bình hành ABCD. Gọi H và K lần lượt là trung điểm của BC và CD. Gọi E là điểm đối xứng với A qua H, gọi F là điểm đối xứng với A qua K. Hình bình hành ABCD phải thỏa mãn điều kiện gì thì C là trực tâm tam giác AEF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác MNEP có
H là trung điểm của NP
H là trung điểm của ME
Do đó: MNEP là hình bình hành
b: Ta có: MNEP là hình bình hành
=>MN//PE
mà QP//MN
và PE,QP có điểm chung là P
nên E,P,Q thẳng hàng
a: Xét tứ giác AMND có
AM//ND
AM=ND
Do đó: AMND là hình bình hành
b: Hình bình hành AMND có AM=AD
nên AMND là hình thoi
c: Xét tứ giác ANKQ có
D là trung điểm của NQ
D là trung điểm của AK
Do đó: ANKQ là hình bình hành
Bài làm:
a, hbh ABCD có: AB // CD và AB = CD
=> AM // DN và AM = DN
=> AMND là hbh mà AB = 2AD => 1/2AB = AD => AM = AD
=> AMND là hthoi
b, cmtt câu a ta có: MB // ND và MB = ND
=> MBND là hbh
Câu a bạn sửa lại để đi mình giải cho .
Sao lại chứng minh ABCD là hình bình hành
a: Xét ΔABD có
E là trung điểm của AB
H là trung điểm của AD
Do đó: EH là đường trung bình của ΔABD
Suy ra: EH//BD và \(EH=\dfrac{BD}{2}\left(1\right)\)
Xét ΔBCD có
F là trung điểm của BC
G là trung điểm của DC
Do đó: FG là đường trung bình của ΔBCD
Suy ra: FG//BD và \(FG=\dfrac{BD}{2}\left(2\right)\)
Từ (1) và (2) suy ra EH//GF và EH=GF
hay EHGF là hình bình hành