Vẽ (P): y=\(\dfrac{x^2}{3}\) và (D): y=2x-3; tìm tọa độ giao điểm của (P) và (D)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu a đề đúng là:
a) Vẽ đồ thị hàm số (D): y = \(-\dfrac{5}{3}x+2\)
b: (d3): y=4x-2+4=4x+2
=>(D1)//(D3); (D2) cắt (D1) và (D2) cắt (D3)
a) Ta có: \(\dfrac{a}{2}=\dfrac{b}{3}\)
\(\Leftrightarrow\dfrac{a}{8}=\dfrac{b}{12}\)(1)
Ta có: \(\dfrac{b}{4}=\dfrac{c}{5}\)
nên \(\dfrac{b}{12}=\dfrac{c}{15}\)(2)
Từ (1) và (2) suy ra \(\dfrac{a}{8}=\dfrac{b}{12}=\dfrac{c}{15}\)
mà a+b+c=2
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{8}=\dfrac{b}{12}=\dfrac{c}{15}=\dfrac{a+b+c}{8+12+15}=\dfrac{2}{35}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{a}{8}=\dfrac{2}{35}\\\dfrac{b}{12}=\dfrac{2}{35}\\\dfrac{c}{15}=\dfrac{2}{35}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{16}{35}\\b=\dfrac{24}{35}\\c=\dfrac{30}{35}=\dfrac{6}{7}\end{matrix}\right.\)
Vậy: \(a=\dfrac{16}{35}\); \(b=\dfrac{24}{35}\); \(c=\dfrac{6}{7}\)
b) Ta có: 2a=3b=5c
nên \(\dfrac{a}{\dfrac{1}{2}}=\dfrac{b}{\dfrac{1}{3}}=\dfrac{c}{\dfrac{1}{5}}\)
mà a+b-c=3
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{\dfrac{1}{2}}=\dfrac{b}{\dfrac{1}{3}}=\dfrac{c}{\dfrac{1}{5}}=\dfrac{a+b-c}{\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{5}}=\dfrac{3}{\dfrac{19}{30}}=\dfrac{90}{19}\)
Do đó:
\(\left\{{}\begin{matrix}2a=\dfrac{90}{19}\\3b=\dfrac{90}{19}\\5c=\dfrac{90}{19}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{45}{19}\\b=\dfrac{30}{19}\\c=\dfrac{18}{19}\end{matrix}\right.\)
Vậy: \(a=\dfrac{45}{19}\); \(b=\dfrac{30}{19}\); \(c=\dfrac{18}{19}\)
a: Hàm số đồng biến trên R
b: Hàm số nghịch biến trên R
a) Vẽ:
(d): \(y=\dfrac{3}{2}x-1\)
(d'): \(y=\dfrac{2}{3}x+1\)
b) Tìm tọa độ giao điểm A của (d) và (d')
b: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}\dfrac{3}{2}x-1=\dfrac{2}{3}x+1\\y=\dfrac{2}{3}x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{12}{5}\\y=\dfrac{13}{5}\end{matrix}\right.\)
b: Phương trình hoành độ giao điểm là:
\(\dfrac{-1}{2}x^2-4x+16=0\)
\(\Leftrightarrow x^2\cdot\dfrac{1}{2}+4x-16=0\)
\(\Leftrightarrow x^2+8x-32=0\)
\(\Leftrightarrow\left(x+4\right)^2=48\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\sqrt{3}-4\\x=-4\sqrt{3}-4\end{matrix}\right.\)
Khi \(x=4\sqrt{3}-4\) thì \(y=\dfrac{-1}{2}\cdot\left(4\sqrt{3}-4\right)^2=-32+16\sqrt{3}\)
Khi \(x=-4\sqrt{3}-4\) thì \(y=\dfrac{-1}{2}\left(-4\sqrt{3}-4\right)^2=-32-16\sqrt{3}\)
b: Để hai đường song song thì
\(\left\{{}\begin{matrix}m-1=-1\\m+3< >1\end{matrix}\right.\Leftrightarrow m=0\)
Xét ptr hoành độ của `(P)` và `(D)` có:
`x^2/3=2x-3`
`<=>x^2=6x-9`
`<=>x^2-6x+9=0`
`<=>(x-3)^2=0`
`<=>x-3=0<=>x=3`
`=>y=2.3-3=3`
Vậy tọa độ giao điểm của `(P)` và `(D)` là: `(3;3)`