S là tổng hệ số của đa thức \(P\left(x\right)=\left(x^3-3x^2+4x+5\right)^{2015}\).Tìm 3 chữ số tận cùng của S
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
P(x) = x3 + 4x3 +3x - 6x - 4 - x2
P(x) = 5x3 -x2 -3x-4
Hệ số cao nhất là: 5
Hẹ số tự do là: -4
Q(x)= -x3 -x3 + 3x+8
Q(x) = -2x2 + 3x+8
\(P\left(x\right)=x^3+4x^3+3x-6x-4-x^2\)
\(P\left(x\right)=\left(x^3+4x^3\right)-x^2+\left(3x-6x\right)-4\)
\(P\left(x\right)=5x^3-x^3-3x-4\)
\(\text{Hệ số cao nhất:5}\)
\(\text{Hệ số tự do:-4}\)
\(Q\left(x\right)=-x^3-x^3+3x+8\)
\(Q\left(x\right)=\left(-x^3-x^3\right)+3x+8\)
\(Q\left(x\right)=-2x^3+3x+8\)
Khi bỏ dấu ngoặc trong P(x) ta thu được đa thức P(x) có dạng
P(x) = an.xn + an-1.xn-1 + an-2.xn-2 + ...+ a1.x + ao
Khi đó, tổng các hệ số của P(x) là an + an-1 + an-2 + ...+ a1 + ao
mà P(1) = an + an-1 + an-2 + ...+ a1 + ao
=> Tổng các hệ số của P(x) bằng P(1) = (3 - 4.1 + 1)1998.(3 + 4.1 + 12)2000 = 0
Tổng các hệ số của 1 đa thức f(x) bất kì bằng giá trị của đa thức đó tại x=1
Vậy tổng các hệ số của đa thức
f(x)=(8x2+5x-14)2015.(3x3-10x2+6x+2)2016
=f(1)=(8.12+5.1-14)2015.(3.13-10.12+6.1+2)2016=(-1)2015.12016=(-1).1=-1
Tổng các hệ số của một đa thức P(x) bất kì bằng giá trị của đa thức đó tại x=1. Vậy tổng các hệ số của đa thức:
P(x)=(3 - 4x + x^2)^2006 . (3 + 4x + x^2)^2007
Bằng P(1)=(3-4+1)^2006 . (3+4+1)^2007=0
Vậy kết quả bằng 0 đó bạn.
Tổng các hệ số của một đa thức P(x) bất kì bằng giá trị cua đa thức đó tại x=1.
Vậy tổng các hệ số của đa thức:
\(P\left(x\right)=\left(3-4x+x^2\right)^{2006}.\left(3+4x+x^2\right)^{2007}\)
Bằng \(P\left(1\right)=\left(3-4+1\right)^{2006}.\left(3+4+1\right)^{2007}=0\)
tìm 3 chữ số tận cùng c ủa \(\left(1-3+4+5\right)^{2015}=7^{2015}....\) là đc
casio ?