cho pt : \(\dfrac{3x+2}{x-4}=2\)
a. tìm điều kiện xác định pt
b. Giải pt
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$mA=\sqrt{x}-2$
$\Leftrightarrow \frac{m(2\sqrt{x}-1)}{\sqrt{x}+1}=\sqrt{x}-2$
$\Rightarrow m(2\sqrt{x}-1)=(\sqrt{x}+1)(\sqrt{x}-2)$
$\Leftrightarrow 2m\sqrt{x}-m=x-\sqrt{x}-2$
$\Leftrightarrow x-\sqrt{x}(2m+1)+(m-2)=0(*)$
Để pt ban đầu có 2 nghiệm pb thì $(*)$ phải có 2 nghiệm dương phân biệt.
Điều này xảy ra khi mà:
\(\left\{\begin{matrix}\
\Delta=(2m+1)^2-4(m-2)>0\\
S=2m+1>0\\
P=m-2>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}
4m^2+9>0\\
m> \frac{-1}{2}\\
m>2\end{matrix}\right.\Leftrightarrow m>2\)
\(x-\sqrt{1-x}=\sqrt{x-2}+3\)
\(ĐK:\left\{{}\begin{matrix}1-x\ge0\\x-2\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le1\\x\ge2\end{matrix}\right.\Leftrightarrow x\in\varnothing\)
Vậy PT vô nghiệm
giải pt thì chịu còn điều kiện thì biết
x^2-x+1>0
x^2-x-2>0
a) Khi $a=3$, ta có phương trình:
$$x-3x+3-x+3x-3+3^2+3^3-3^2=0$$
$$\Leftrightarrow 6x=51 \Leftrightarrow x=\frac{17}{2}$$
Vậy nghiệm của phương trình là $x=\frac{17}{2}$.
b) Khi $a=1$, ta có phương trình:
$$x-x+1-x+1x-1+3+1-1=0$$
$$\Leftrightarrow x=0$$
Vậy nghiệm của phương trình là $x=0$.
c) Để phương trình có nghiệm $x=0,5$, ta cần giải phương trình:
$$0,5-a(0,5)+a-0,5+a(0,5)-a+3a^2+a^3-a^2=0$$
$$\Leftrightarrow a^3+3a^2-2a=0$$
$$\Leftrightarrow a(a-1)(a+2)=0$$
Vậy các giá trị của $a$ để phương trình có nghiệm $x=0,5$ là $a=0,1$ hoặc $a=-2$.
a, ĐKXĐ : x ≠ 4
b,
\(\Leftrightarrow3x+2=2\left(x-4\right)\)
\(\Leftrightarrow3x+2=2x-8\)
\(\Leftrightarrow x=-10\) (N)
Vậy : ...
`a)` Ptr xác định `<=>x-4 \ne 0<=>x \ne 4`
`b)[3x+2]/[x-4]=2` `ĐK: x \ne 4`
`<=>3x+2=2(x-4)`
`<=>3x+2=2x-8`
`<=>3x-2x=-8-2`
`<=>x=-10` (t/m)
Vậy `S={-10}`