K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2021

\(\dfrac{15x-2}{4}-\dfrac{x^2+1}{3}>\dfrac{x\left(1-2x\right)}{6}+\dfrac{x-3}{2}\\ \Leftrightarrow3\left(15x-2\right)-4\left(x^2+1\right)>2x\left(1-2x\right)+6\left(x-3\right)\\ \Leftrightarrow45x-6-4x^2-4>2x-4x^2+6x-18\\ \Leftrightarrow45x-6x-2x>6+4-18\\ \Leftrightarrow37x>-8\\ \Leftrightarrow x>-\dfrac{8}{37}\)

10 tháng 4 2021

\(\dfrac{3\left(15x-2\right)}{12}-\dfrac{4\left(x^2+1\right)}{12}>\dfrac{2x\left(1-2x\right)}{12}+\dfrac{6\left(x-3\right)}{12}\)

\(45x-6-\left(4x^2+4\right)>2x-4x^2+6x-18\)

\(45x-4x^2+4x^2-2x-6x>6+4-18\)

\(37x>-8\)

\(x>\dfrac{-8}{37}\)

1: \(\Leftrightarrow x^2+6x+9-6x+3>x^2-4x\)

=>-4x<12

hay x>-3

2: \(\Leftrightarrow6+2x+2>2x-1-12\)

=>8>-13(đúng)

4: \(\dfrac{2x+1}{x-3}\le2\)

\(\Leftrightarrow\dfrac{2x+1-2x+6}{x-3}< =0\)

=>x-3<0

hay x<3

6: =>(x+4)(x-1)<=0

=>-4<=x<=1

16 tháng 3 2021

1.

ĐK: \(x\ne7;x\ne-1;x\ne3\)

\(\dfrac{2x-5}{x^2-6x-7}\le\dfrac{1}{x-3}\left(1\right)\)

TH1: \(x< -1\)

\(\left(1\right)\Leftrightarrow\left(2x-5\right)\left(x-3\right)\ge x^2-6x-7\)

\(\Leftrightarrow2x^2-11x+15\ge x^2-6x-7\)

\(\Leftrightarrow x^2-5x+22\ge0\)

\(\Leftrightarrow\) Bất phương trình đúng với mọi \(x< -1\)

TH2: \(-1< x< 3\)

\(\left(1\right)\Leftrightarrow\left(3-x\right)\left(2x-5\right)\ge\left(7-x\right)\left(x+1\right)\)

\(\Leftrightarrow-2x^2+11x-15\ge-x^2+6x+7\)

\(\Leftrightarrow-x^2+5x-22\ge0\)

\(\Rightarrow\) vô nghiệm

TH3: \(3< x< 7\)

Khi đó \(\dfrac{2x-5}{x^2-6x-7}\le0\)\(\dfrac{1}{x-3}>0\)

\(\Rightarrow\) Bất phương trình đúng với mọi \(3< x< 7\)

TH4: \(x>7\)

\(\left(1\right)\Leftrightarrow\left(2x-5\right)\left(x-3\right)\le x^2-6x-7\)

\(\Leftrightarrow2x^2-11x+15\le x^2-6x-7\)

\(\Leftrightarrow x^2-5x+22\le0\)

\(\Rightarrow\) vô nghiệm

Vậy ...

Các bài kia tương tự, chứ giải ra mệt lắm.

28 tháng 1 2022

\(\dfrac{2x-1}{x+1}-2< 0.\left(x\ne-1\right).\\ \Leftrightarrow\dfrac{2x-1-2x-2}{x+1}< 0.\Leftrightarrow\dfrac{-3}{x+1}< 0.\)

Mà \(-3< 0.\)

\(\Rightarrow x+1>0.\Leftrightarrow x>-1\left(TMĐK\right).\)

\(\dfrac{x^2-2x+5}{x-2}-x+1\ge0.\left(x\ne2\right).\\ \Leftrightarrow\dfrac{x^2-2x+5-x^2+2x+x-2}{x-2}\ge0.\\ \Leftrightarrow\dfrac{x+3}{x-2}\ge0.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+3\ge0.\\x-2\ge0.\end{matrix}\right.\\\left\{{}\begin{matrix}x+3\le0.\\x-2\le0.\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge-3.\\x\ge2.\end{matrix}\right.\\\left\{{}\begin{matrix}x\le-3.\\x\le2.\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x\ge2.\\x\le-3.\end{matrix}\right.\)

Kết hợp ĐKXĐ.

\(\Rightarrow\left[{}\begin{matrix}x>2.\\x\le-3.\end{matrix}\right.\)

\(\dfrac{\left(1+2x\right)\left(x-2\right)}{\left(2x+3\right)\left(1-x\right)}\le0.\left(x\ne1;x\ne\dfrac{-3}{2}\right).\)

Đặt \(\dfrac{\left(1+2x\right)\left(x-2\right)}{\left(2x+3\right)\left(1-x\right)}=f\left(x\right).\)

Ta có bảng sau:

\(x\)\(-\infty\)              \(-\dfrac{3}{2}\)                       \(-\dfrac{1}{2}\)                       \(1\)                         \(2\)                        \(+\infty\)
\(1+2x\)         -              |            -                 0           +              |           +               |              +           
\(x-2\)         -               |           -                  |             -           |             -             0             +
\(2x+3\)         -              0           +                |             +            |              +           |             +
\(1-x\)         +              |           +                |              +           0             -            |            -                
\(f\left(x\right)\)

          -              ||          +                0               -          ||           +              0            -

Vậy \(f\left(x\right)\ge0.\Leftrightarrow x\in\left(\dfrac{-3}{2};\dfrac{-1}{2}\right)\cup\)(1;2].

 

28 tháng 1 2022

2)  ĐK:x≠2 

Nếu x>2 

BPT ⇔ x2−2x+5−(x−1)(x−2)≥0 ⇔ x2−2x+5−(x2−3x+3)≥0

x+2≥0 ⇔x≥−2 ⇒ Lấy x≥2

Nếu 

 −(x2−2x+5)x−2−x+1≥0                                                        ⇔

a) Ta có: \(\dfrac{2x+1}{6}-\dfrac{x-2}{4}=\dfrac{3-2x}{3}-x\)

\(\Leftrightarrow\dfrac{2\left(2x+1\right)}{12}-\dfrac{3\left(x-2\right)}{12}=\dfrac{4\left(3-2x\right)}{12}-\dfrac{12x}{12}\)

\(\Leftrightarrow4x+2-3x+6=12-8x-12x\)

\(\Leftrightarrow x+8-12+20x=0\)

\(\Leftrightarrow21x-4=0\)

\(\Leftrightarrow21x=4\)

\(\Leftrightarrow x=\dfrac{4}{21}\)

Vậy: \(S=\left\{\dfrac{4}{21}\right\}\)

AH
Akai Haruma
Giáo viên
5 tháng 3 2021

Hình như em viết công thức bị lỗi rồi. Em cần chỉnh sửa lại để được hỗ trợ tốt hơn!

11 tháng 4 2021

a)

 \(1+\dfrac{x+1}{3}>\dfrac{2x-1}{6}-2\\ \Leftrightarrow6+2\left(x+1\right)>2x-1-12\\ \Leftrightarrow8>-13\left(t.m\right)\)

Vậy bất phương trình có vô số nghiệm.

 

28 tháng 1 2022

\(1,\) thiếu đề

\(2,\dfrac{5x+2}{6}-\dfrac{8x-1}{3}=\dfrac{4x+2}{5}-5\)

\(\Leftrightarrow\dfrac{5\left(5x+2\right)}{30}-\dfrac{10\left(8x-1\right)}{30}=\dfrac{6\left(4x+2\right)}{30}-\dfrac{150}{30}\)

\(\Leftrightarrow5\left(5x+2\right)-10\left(8x-1\right)=6\left(4x+2\right)-150\)

\(\Leftrightarrow25x+10-80x+10=24x+12-150\)

\(\Leftrightarrow-55x+20=24x-138\)

\(\Leftrightarrow24x-138+55x-20=0\)

\(\Leftrightarrow79x-158=0\)

\(\Leftrightarrow x=2\)

\(3,ĐKXĐ:\left\{{}\begin{matrix}x\ne1\\x\ne-1\\x\ne3\end{matrix}\right.\\ \dfrac{x}{2x-6}+\dfrac{x}{2x-2}=\dfrac{-2x}{\left(x+1\right)\left(3-x\right)}\)

\(\Leftrightarrow\dfrac{x}{2\left(x-3\right)}+\dfrac{x}{2\left(x-1\right)}+\dfrac{2x}{\left(x+1\right)\left(3-x\right)}=0\)

\(\Leftrightarrow\dfrac{x}{2\left(x-3\right)}+\dfrac{x}{2\left(x-1\right)}-\dfrac{2x}{\left(x+1\right)\left(x-3\right)}=0\)

\(\Leftrightarrow x\left(\dfrac{1}{2\left(x-3\right)}+\dfrac{1}{2\left(x-1\right)}-\dfrac{2}{\left(x+1\right)\left(x-3\right)}\right)=0\)

\(\Leftrightarrow x\left(\dfrac{\left(x-1\right)\left(x+1\right)}{2\left(x-1\right)\left(x-3\right)\left(x+1\right)}+\dfrac{\left(x-3\right)\left(x+1\right)}{2\left(x-1\right)\left(x-3\right)\left(x+1\right)}-\dfrac{4\left(x-1\right)}{2\left(x+1\right)\left(x-3\right)\left(x-1\right)}\right)=0\)

\(\Leftrightarrow x\left(\dfrac{x^2-1}{2\left(x-1\right)\left(x-3\right)\left(x+1\right)}+\dfrac{x^2-2x-3}{2\left(x-1\right)\left(x-3\right)\left(x+1\right)}-\dfrac{4x-4}{2\left(x+1\right)\left(x-3\right)\left(x-1\right)}\right)=0\)

\(\Leftrightarrow x.\dfrac{x^2-1+x^2-2x-3-4x+4}{2\left(x-1\right)\left(x-3\right)\left(x+1\right)}=0\)

\(\Leftrightarrow x.\dfrac{2x^2-6x}{2\left(x-1\right)\left(x-3\right)\left(x+1\right)}=0\)

 

 

\(\Leftrightarrow x.\dfrac{2x\left(x-3\right)}{2\left(x-1\right)\left(x-3\right)\left(x+1\right)}=0\)

\(\Leftrightarrow x.\dfrac{x}{\left(x-1\right)\left(x+1\right)}=0\)

\(\Leftrightarrow\dfrac{x^2}{\left(x-1\right)\left(x+1\right)}=0\)

\(\Leftrightarrow x=0\)

NV
18 tháng 3 2021

1a.

ĐKXĐ: \(x\ne\left\{1;3\right\}\)

\(\Leftrightarrow\dfrac{6}{x-1}=\dfrac{4}{x-3}+\dfrac{4}{x-3}\)

\(\Leftrightarrow\dfrac{3}{x-1}=\dfrac{4}{x-3}\Leftrightarrow3\left(x-3\right)=4\left(x-1\right)\)

\(\Leftrightarrow3x-9=4x-4\Rightarrow x=-5\)

b.

ĐKXĐ: \(x\ne\left\{-1;2\right\}\)

\(\Leftrightarrow\dfrac{5}{x+1}=\dfrac{3}{2-x}+\dfrac{1}{2-x}\)

\(\Leftrightarrow\dfrac{5}{x+1}=\dfrac{4}{2-x}\Leftrightarrow5\left(2-x\right)=4\left(x+1\right)\)

\(\Leftrightarrow10-2x=4x+4\Leftrightarrow6x=6\Rightarrow x=1\)

NV
18 tháng 3 2021

1c.

ĐKXĐ: \(x\ne\left\{2;5\right\}\)

\(\Leftrightarrow\dfrac{3x\left(x-5\right)}{\left(x-2\right)\left(x-5\right)}-\dfrac{x\left(x-2\right)}{\left(x-2\right)\left(x-5\right)}=\dfrac{-3x}{\left(x-2\right)\left(x-5\right)}\)

\(\Leftrightarrow3x\left(x-5\right)-x\left(x-2\right)=-3x\)

\(\Leftrightarrow2x^2-10x=0\Leftrightarrow2x\left(x-5\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=5\left(loại\right)\end{matrix}\right.\)

2a.

\(\Leftrightarrow-4x^2-5x+6=x^2+4x+4\)

\(\Leftrightarrow5x^2+9x-2=0\Rightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{1}{5}\end{matrix}\right.\)

2b.

\(2x^2-6x+1=0\Rightarrow x=\dfrac{3\pm\sqrt{7}}{2}\)