Cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D. Trên cạnh AC lấy điểm E sao cho AD = AE
a) C/M rằng BE = CD.
b) C/M rằng góc ABE bằng góc ACD.
c) Gọi K là giao điểm của BE và CD. Tam giác KBC là tam giác gì? Vì sao?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác ABE và tam giác ADC:
AE=AC(theo gt tam giác ABC cân )
góc A chung
AE=AD(theo gt)
=> Tam giác ABE=tam giác ADC(c.g.c)
nên BE=CD(dpcm)
b) Vì tam giác ABE=tam giác ACD nên góc ABE=góc ACD( 2 góc tương ứng)
c) Xét Tam giác DKB và tam giác EKC
góc DKB=góc EKC(đối đỉnh)
AB=AC(tam giác ABC cân) mà AD=AE (gt) =>DB=EC
góc DBK= góc ECK
=>tam giác DKB=tam giác EKC(g.c.g)
=>KB=KC(2 cạnh tương ứng)
=>tam giác KBC là tam giác cân .
a) Xét \(\Delta\) BAE và \(\Delta\) CAD có:
AB = AC ( \(\Delta\) ABC cân tại A )
BAE = CAD ( chung góc A )
AD = AE ( giả thiết )
.=> \(\Delta\) BAE = \(\Delta\) CAD ( c . g . c ) (1)
=> BE = CD ( 2 cạnh tương ứng )
Vậy BE = CD ( đpcm)
b) Ta có: \(\Delta\) BAE = \(\Delta\) CAD ( chứng minh (1) )
=> ABE = ACD ( 2 góc tương ứng )
Vậy ABE = ACE ( đpcm )
c) Ta có: \(\Delta\) ABC cân tại A ( giả thiết )
=> ABC = ACB ( tính chất tam giác cân )
hay DBC = ECB (2)
Xét \(\Delta\) DBC và \(\Delta\) ECB có:
CD = BE ( chứng minh a)
DBC = ECB ( chứng minh (2) )
BC là cạnh chung
=> \(\Delta\) DBC = \(\Delta\) ECB ( c . g . c )
=> DCB = EBC ( 2 góc tương ứng )
hay KCB = KBC
Xét \(\Delta\) KBC có: KCB = KBC
=> \(\Delta\) KBC cân tại K
Vậy \(\Delta\) KBC cân tại K
Chuk bn hk tốt !
a: Xét ΔABE và ΔACDcó
AB=AC
góc BAE chung
AE=AD
=>ΔABE=ΔACD
=>BE=CD
b: ΔABE=ΔACD
=>góc ABE=góc ACD
c: góc ABE+góc KBC=góc ABC
góc ACD+góc KCB=góc ACB
mà góc ABE=góc ACD và góc ABC=góc ACB
nên góc KBC=góc KCB
=>KB=KC
d: AB=AC
KB=KC
=>AK là trung trực của BC
=>A,K,I thẳng hàng
Tự kẻ hình nha !!!
a)Tam giác ABC cân tại A =>AB=AC;góc B= góc C
D thuộc AB => BD+AD= AB
C thuộc AC =>CE + EA = AC
Mà AB=AC nên AD=EA
Xét tam giác AEB và tam giác ADC:
AD=EA( cmt)
AB=AC(cmt)
góc A: góc chung
=>tam giác AEB = tam giác ADC (c.g.c)
=>BE=CD(2 cạnh tương ứng)
b)theo a) ta có tam giác AEB=tam giác ADC=>góc ABE= góc ACD( 2 góc tương ứng)
c)ta có góc B= góc C và góc ABE = góc ACD
Mà góc ABE + góc EBC = goc B
Góc ACD +góc DCB= góc C =>góc EBC = góc DCB
Tam giác KBC có: góc EBC = góc DCB =>tam giác KBC là tam giác cân tại K
* nhớ k cho mk nhé!!!
hướng dẫn:
a) chứng minh tam giác ABE = tam giác ACD (c.g.c) (1)
** câu này dễ rồi nhé, A^ chung, AB = AC, AD = AE**
=> BE = CD
b) (1) => ABE^ = ACD^
c) Dễ thấy BD = CE
từ đó dễ chứng minh tam giác BDC = tam giác CEB (c.c.c)
=> BCD^ = EBC^ => BCK^ = CBK^ => tam giác KBC cân
hướng dẫn:
a) chứng minh tam giác ABE = tam giác ACD (c.g.c) (1)
** câu này dễ rồi nhé, A^ chung, AB = AC, AD = AE**
=> BE = CD
b) (1) => ABE^ = ACD^
c) Dễ thấy BD = CE
từ đó dễ chứng minh tam giác BDC = tam giác CEB (c.c.c)
=> BCD^ = EBC^ => BCK^ = CBK^ => tam giác KBC cân
a) Vì tg ABC là tg cân nên AB = AC mà AD = AE => AB – AD = AC – AE
=> BD = CE => ĐPCM
Xin lỗi mình chỉ giải đc phần a thôi
a: Xét ΔABE và ΔACD có
AB=AC
\(\widehat{BAE}\) chung
AE=AD
Do đó: ΔABE=ΔACD
b: Ta có: ΔABE=ΔACD
nên \(\widehat{ABE}=\widehat{ACD}\)
c: Xét ΔDBC và ΔECB có
DB=EC
BC chung
DC=EB
Do đó: ΔDBC=ΔECB
Suy ra: \(\widehat{KCB}=\widehat{KBC}\)
hay ΔKBC cân tại K
a,
Xét Δ ADC và Δ AEB
Ta có : AD = AE (gt)
AC = AB (Δ ABC cân tại A)
\(\widehat{DAC}=\widehat{EAB}\) (góc chung)
=> Δ ADC = Δ AEB (c.g.c)
b, Ta có : Δ ADC = Δ AEB (cmt)
=> \(\widehat{ACD}=\widehat{ABE}\)
a)Xét △ABE và △ACD có
AB = AC ( △ABC cân tại A)
AD = AE (gt)
\(\widehat{A}\) là góc chung
=> △ABE = △ACD (c-g-c)
=> BE = CD ( e cạnh tương ứng)
b) Vì △ABE = △ACD
nên \(\widehat{ABE}=\widehat{ACD}\)
c)
Vì \(\widehat{ABC}=\widehat{ABE}+\stackrel\frown{EBC}\)
\(\text{}\widehat{ACB}=\widehat{ACD}+\widehat{DCB}\)
mà \(\widehat{ABE}=\widehat{ACD}\)
\(\widehat{ABC}=\widehat{ACB}\)
nên \(\widehat{EBC}=\widehat{DCB}\)
=> △KBC là tam giác cân tại K