a) Không sử dụng máy tính cầm tay, hãy giải hệ phương trình $\left\{\begin{array}{l}3 x+y=1 \\ x-2 y=5\end{array}\right.$
b) Viết phương trình đường thẳng $(d): y=a x+b$ $ (a \neq 0)$, biết rằng đường thẳng $(d)$ song song với đường thẳng $\left(d^{\prime}\right): y=2 x-1$ và đi qua điểm $M(2 ;-3)$.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\hept{\begin{cases}4x-y=7\\x+3y=5\end{cases}}\Leftrightarrow\hept{\begin{cases}y=4x-7\left(1\right)\\x+3y=5\left(2\right)\end{cases}}\)
Thế (1) vào (2) ta được : \(x+3\left(4x-7\right)=5\Leftrightarrow x+12x-21=5\)
\(\Leftrightarrow13x=26\Leftrightarrow x=2\)
Theo (1) ta có : \(y=8-7=1\)
Vậy \(\left(x;y\right)=\left(2;1\right)\)
1. \(2x^2-3x-5=0\)
\(\Leftrightarrow\left(2x-5\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x-5=0\\x+1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2,5\\x=-1\end{cases}}\)
Vậy tập ngiệm của phương trình là \(S=\left\{2,5;-1\right\}\)
2x2-3x-5=0
2x2+2x-5x-5=0
2x(x+1)+5(x+1)=0
(x+1)(2x+5)=0
TH1 x+1=0 <=>x=-1
TH2 2x+5=0<=>2x=-5<=>x=-5/2
2. ta có:
2(x-2y)-(2x+y)=-1.2-8
2x-4y-2x-y=-2-8
-5y=-10
y=2
thay vào
x-2y=-1 ( với y=2)
<=> x-2.2=-1
x-4=-1
x=3
a, \(\left\{{}\begin{matrix}6x+2y=2\\x-2y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1-3x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
b, đk a khác 0
Ta có (d) // (d') <=> \(\left\{{}\begin{matrix}a=2\\b\ne-1\end{matrix}\right.\)
=> (d) : y = 2x + b ( b khác -1 )
(d) đi qua M(2;-3) <=> -3 = 4 + b <=> b = -7