202 x 12,5 x 50% + 202 : 4/5 + 202 : 0,4 + 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(202x\frac{3}{4}+202x\frac{5}{4}+202x8\)
\(=202x\left(\frac{3}{4}+\frac{5}{4}+8\right)\)
\(=202x\left(\frac{8}{4}+8\right)\)
\(=202x\left(2+8\right)\)
\(=202x10\)
\(=2020\)
\(=202*(\frac{3}{4}+ \frac{5}{4}+8) = 202*9 = 1818\)
Nhiều quá
a)202303=(2023)101=8242408101
303^202=(302^2)^101=91204^101
Vì 824208^101>91204^101=>202^303>303^202
a, 2019 x (2 x 5)
= 2019 x 10
= 20 190
b, (5 x 2) x (8 x 125) x 9
= 10 x 1000 x 9
= 90 000
c, (4 x 25) x 2019
= 100 x 2019
= 201 900
d, (50 x 2) x (125 x 8) x 202
= 100 x 1000 x 202
= 20 200 000
a) 2019 x 2 x 5
= (2 x 5) x 2019
= 10 x 2019
= 20190b) 5 x 8 x 9 x 2 x 125
= (5 x 2) x (125 x 8) x 9
= 10 x 1000 x 9
= 10000 x 9
= 90000
c) 4 x 2019 x 25
= (4 x 25) x 2019
= 100 x 2019
= 201900
d) 50 x 125 x 2 x 8 x 202
= (50 x 2) x (125 x 8) x 202
= 100 x 1000 x 202
= 100000 x 202
= 20200000
(50 x 2) x (125 x 8) x 202
= 100 x 1000 x 202
= 20 200 000
em nên gõ công thức trực quan để được hỗ trợ tốt nhất nhé
D = \(\dfrac{1}{7^2}\) - \(\dfrac{2}{7^3}\) + \(\dfrac{3}{7^4}\) - \(\dfrac{4}{7^5}\) +........+ \(\dfrac{201}{7^{202}}\) - \(\dfrac{202}{7^{203}}\)
7 \(\times\) D = \(\dfrac{1}{7}\) - \(\dfrac{2}{7^2}\) + \(\dfrac{3}{7^3}\) - \(\dfrac{4}{7^4}\) + \(\dfrac{5}{7^5}\) -.......- \(\dfrac{202}{7^{202}}\)
7D +D = \(\dfrac{1}{7}\) - \(\dfrac{1}{7^2}\) + \(\dfrac{1}{7^3}\) - \(\dfrac{1}{7^4}\) + \(\dfrac{1}{7^5}\) -.........-\(\dfrac{1}{7^{202}}\) - \(\dfrac{202}{7^{203}}\)
D = ( \(\dfrac{1}{7}\) - \(\dfrac{1}{7^2}\) + \(\dfrac{1}{7^3}\) - \(\dfrac{1}{7^4}\) + \(\dfrac{1}{7^5}\) -.........-\(\dfrac{1}{7^{202}}\) - \(\dfrac{202}{7^{203}}\)) : 8
Đặt B = \(\dfrac{1}{7}\) - \(\dfrac{1}{7^2}\) + \(\dfrac{1}{7^3}\) - \(\dfrac{1}{7^4}\) + \(\dfrac{1}{7^5}\) -........+\(\dfrac{1}{7^{201}}\).-\(\dfrac{1}{7^{202}}\)
7 \(\times\) B = 1 - \(\dfrac{1}{7}\)+\(\dfrac{1}{7^2}\) - \(\dfrac{1}{7^3}\) + \(\dfrac{1}{7^4}\) - \(\dfrac{1}{7^5}\) +.........- \(\dfrac{1}{7^{201}}\)
7B + B = 1 - \(\dfrac{1}{7^{202}}\)
B = ( 1 - \(\dfrac{1}{7^{202}}\)) : 8
D = [ ( 1 - \(\dfrac{1}{7^{202}}\)): 8 - \(\dfrac{202}{7^{203}}\)] : 8
D = \(\dfrac{1}{64}\) - \(\dfrac{1}{64.7^{202}}\) - \(\dfrac{202}{7^{203}.8}\) < \(\dfrac{1}{64}\)