một mảnh vườm hcn có chu vi là 248m nếu tăng chiều dài thêm 5m và chiều rộng thêm 3m thì diện tích tăng 255m2 tính kích thước ban đầu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi AB,BC thứ tự là chiều dài và chiều rộng của hcn
diện tích hcn là:AB.BC
vì sau khi tăng chiều dài 5m, chiều rộng 3m thì S tăng thêm 255 m2 nên ta có phương trình
(AB+5).(BC+3)-AB.BC=255
<=>AB.BC+3.AB+5.BC+15-AB.BC=255
<=>3.AB+5.BC=240(1)
mà AB+BC=62=>3.AB+3.BC=186(2)
trừ cả 2 vế của (1) và (2) ta được
3.AB+5.BC-3.AB-3.BC=240-186
<=>2.BC=54<=>BC=27(m)
=>AB=35(m)
Vậy AB=35m,BC=27m
Gọi CD khu vườn là a (m)
CR khu vườn là b (m) đk: a;b >0
Theo bài, ta có:
\(\left\{{}\begin{matrix}2\left(a+b\right)=56\\\left(a+3\right)\left(b-1\right)=ab+5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=28\\3b-a=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=19\left(tm\right)\\b=9\left(tm\right)\end{matrix}\right.\)
Vậy.....
Gọi chiều dài và chiều rộng mảnh đất lần lượt là a và (m; a,b>0)
+ Mảnh đất có chu vi 70m
\(\Rightarrow2\left(a+b\right)=75\left(1\right)\)
+ Tăng chiều rộng 1m ,giảm chiều dài 5m thì diện tích mảnh đất giảm 60m2 so với ban đầu
\(\Rightarrow\left(a-5\right)\left(b+1\right)=ab-60\\ \Leftrightarrow ab+a-5b-5=ab-60\\ \Leftrightarrow a-5b=-55\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\Rightarrow hpt:\left\{{}\begin{matrix}2a+2b=70\\a-5b=-55\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=20\\b=15\end{matrix}\right.\left(TM\right)\)
Vậy chiều dài mảnh đất là 20(m) và chiều rộng mảnh đất là 15(m)
Nửa chu vi của mảnh đất là: 70:2=35(m)
Gọi chiều dài ban đầu của mảnh đất là a(m)(Điều kiện: \(0< a\le35\))
Chiều rộng ban đầu của mảnh đất là: 35-a(m)
Diện tích ban đầu của mảnh đất là: \(a\left(35-a\right)=35a-a^2\left(m^2\right)\)
Vì khi tăng chiều rộng thêm 1m và giảm chiều dài 5m thì diện tích giảm 60m2 so với ban đầu nên ta có phương trình:
\(\left(a-5\right)\left(35-a+1\right)=35a-a^2-60\)
\(\Leftrightarrow\left(a-5\right)\left(-a+36\right)=35a-a^2-60\)
\(\Leftrightarrow-a^2+36a+5a-180-35a+a^2+60=0\)
\(\Leftrightarrow6a-120=0\)
\(\Leftrightarrow6a=120\)
hay a=20(thỏa ĐK)
Chiều rộng ban đầu là: 35-20=15(m)
Vậy: Chiều dài và chiều rộng ban đầu là 20m và 15m
2/Gọi chiều dài,rộng lần lượt là a;b (m;a,b>0)
Từ đề bài,suy ra a + b = 28 m
Suy ra a = 28 - b.
Suy ra diện tích là b(28-b)
Theo đề bài,ta có phương trình: \(\left(b-2\right)\left(28-b+4\right)=b\left(28-b\right)+8\)
\(\Leftrightarrow\left(b-2\right)\left(32-b\right)=-b^2+28b+8\)
\(\Leftrightarrow-b^2+34b-64=-b^2+28b+8\)
\(\Leftrightarrow34b-64=28b+8\)
\(\Leftrightarrow6b-72=0\Leftrightarrow b=12\)
Suy ra chiều dài là: 28 - b = 28 - 12 = 16
Vậy ...
gọi x và y lần lượt là chiều dài và chiều rộng của HCN(x>y>0)
từ đề bài ta có x=3y và (x+5)(y+5)=385+xy
ta có pt xy+5x+5y+25=385+xy
<=>20x=360
<=>x=18
=>y=x:3=18:3=6
vậy...
Nửa chu vi HCN: 320:2=160(m)
Gọi độ dài của chiều dài là a(m) (a>0)
=> Độ dài chiều rộng là 160-a(m)
Chiều dài tăng 10m, rộng tăng 20m thì chiều dài mới là (a+10) (m), chiều rộng mới là (180-a) (m)
Diện tích HCN tăng 2700m2, ta được pt:
(180 - a) x (a+10) - (160-a) x a= 2700
<=> 180a - 10a - 160a = 2700 - 1800
<=> 10a = 900
<=>a=90 (TM) (m)
Vậy HCN có chiều dài 90m và chiều rộng là 70m
Gọi chiều dài của hình chữ nhật ban đầu là x , m , x>15 \(x\in R\)
=> Chiều rộng của hình chữ nhật ban đầu là x-15 , m
=> Diện tích của hình chữ nhật ban đầu là \(x\left(x-15\right)\) , m2
Theo bài ra ta có :
Chiều dài của hình chữ nhật mới là : x + 5 , m
Chiều rộng của hình chữ nhật mới là : x - 5 , m
=> Diện tích hình chữ nhật mới là : \(\left(x+5\right)\left(x-5\right)\) , m2
Theo giả thiết đề nên ta có phương trình :
\(\left(x+5\right)\left(x-5\right)-x\left(x-15\right)=650\)
<=> x = 35,25 m
vậy chiều dài ban đầu là 35,25 m
chiều ring ban đầu là 20,25 m
Gọi chiều dài và chiều rộng mảnh vườn lần lượt là \(a\left(m\right),b\left(m\right)\left(a>b>0\right)\)
Ta có: \(\left(a+b\right).2=248\Rightarrow a+b=124\)
Diện tích ban đầu là: \(ab\left(m^2\right)\)
Diện tích mới là: \(\left(a+5\right)\left(b+3\right)=ab+255\left(m^2\right)\)
\(\Rightarrow3a+5b=240\)
Ta có hệ phương trình: \(\left\{{}\begin{matrix}a+b=124\\3a+5b=240\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}5a+5b=620\\3a+5b=240\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2a=380\\b=124-a\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=190\left(m\right)\\b=-66\left(m\right)\end{matrix}\right.\left(L\right)\)
Vậy không có khu vườn có các kích thước thỏa mãn ycbt.