1/3.7 + 1/7.11 +...+1/51.55=?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chắc là đề thiếu: \(y=\frac{1}{2}-\frac{1}{3\cdot7}-\frac{1}{7\cdot11}-\frac{1}{11\cdot15}-\frac{1}{15\cdot19}-\frac{1}{19\cdot23}-\frac{1}{23\cdot27}\)
\(y=\frac{1}{2}-\left(\frac{1}{3\cdot7}+\frac{1}{7\cdot11}+...+\frac{1}{23\cdot27}\right)\)
\(=\frac{1}{2}-\frac{1}{4}\left(\frac{4}{3\cdot7}+\frac{4}{7\cdot11}+...+\frac{4}{23\cdot27}\right)\)
\(=\frac{1}{2}-\frac{1}{4}\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{23}-\frac{1}{27}\right)\)
\(=\frac{1}{2}-\frac{1}{4}\left(\frac{1}{3}-\frac{1}{27}\right)=\frac{1}{2}-\frac{1}{4}\cdot\frac{8}{27}=\frac{23}{54}\)
\(A=\frac{1}{3.7}+\frac{1}{7.11}+...+\frac{1}{103.107}\)
\(A=\frac{1}{4}.\left(\frac{4}{3.7}+\frac{4}{7.11}+...+\frac{4}{103.107}\right)\)
\(A=\frac{1}{4}.\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{103}-\frac{1}{107}\right)\)
\(A=\frac{1}{4}.\left(\frac{1}{3}-\frac{1}{107}\right)\)
\(A=\frac{1}{4}.\frac{104}{321}\)
\(A=\frac{26}{321}\)
_Chúc bạn học tốt_
\(A=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{103}-\frac{1}{107}\)
\(A=\frac{1}{3}-\frac{1}{107}=\frac{104}{321}\)
Ta có : \(\frac{1}{2}-\frac{1}{3.7}-\frac{1}{7.11}-\frac{1}{11.15}-\frac{1}{15.19}-\frac{1}{19.23}-\frac{1}{23.27}\)
\(=\frac{1}{2}-\left(\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.15}+\frac{1}{15.19}+\frac{1}{19.23}+\frac{1}{23.27}\right)\)
\(=\frac{1}{2}-\frac{1}{4}\left(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+\frac{4}{15.19}+\frac{4}{19.23}+\frac{4}{23.27}\right)\)
\(=\frac{1}{2}-\frac{1}{4}.\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+\frac{1}{15}-\frac{1}{19}+\frac{1}{19}-\frac{1}{23}+\frac{1}{23}-\frac{1}{27}\right)\)
\(=\frac{1}{2}-\frac{1}{4}.\left(\frac{1}{3}-\frac{1}{27}\right)=\frac{1}{2}-\frac{1}{4}.\frac{8}{27}=\frac{1}{2}-\frac{2}{27}=\frac{23}{54}\)
Trả lời:
\(\frac{1}{2}-\frac{1}{3.7}-\frac{1}{7.11}-\frac{1}{11.15}-\frac{1}{15.19}-\frac{1}{19.23}-\frac{1}{23.27}\)
\(=\frac{1}{2}-\left(\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.15}+\frac{1}{15.19}+\frac{1}{19.23}+\frac{1}{23.27}\right)\)
\(=\frac{1}{2}-\frac{1}{4}.\left(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+\frac{4}{15.19}+\frac{4}{19.23}+\frac{4}{23.27}\right)\)
\(=\frac{1}{2}-\frac{1}{4}.\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+\frac{1}{15}-\frac{1}{19}+\frac{1}{19}-\frac{1}{23}+\frac{1}{23}-\frac{1}{27}\right)\)
\(=\frac{1}{2}-\frac{1}{4}.\left(\frac{1}{3}-\frac{1}{27}\right)\)
\(=\frac{1}{2}-\frac{1}{4}.\frac{8}{27}\)
\(=\frac{1}{2}-\frac{2}{27}\)
\(=\frac{23}{54}\)
Học tốt
S=1/3.7+1/7.11+...+1/19.23 (1)
Nhân cả 2 vế của đẳng thức (1) với 4 ta được:
4S=4/3.7+4/7.11+...+4/19.23
4S=1/3.7+1/7.11+...+1/19.23
4S=1/3-1/7+1/7-1/11+..+1/19-1/23
4S=1/3-1/23
4S=20/69
S =20/69:4
S =5/69
Mọi người ủng hộ mik nha
\(S=\frac{1.4}{3.7.4}+\frac{1.4}{7.11.4}+......+\frac{1.4}{19.23.4}\)
\(=\frac{1}{4}.\left(\frac{4}{3.7}+\frac{4}{7.11}+......+\frac{4}{19.23}\right)\)
\(=\frac{1}{4}.\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+......+\frac{1}{19}-\frac{1}{20}\right)\)
\(=\frac{1}{4}.\left(\frac{1}{3}-\frac{1}{20}\right)\)
\(=\frac{1}{4}.\frac{17}{60}=\frac{17}{240}\)
\(\frac{1}{3.7}+\frac{1}{7.11}+...+\frac{1}{\left(4x+3\right)\left(4x+7\right)}=\frac{5}{12}\)(x phải khác \(-\frac{3}{4};-\frac{7}{4}\)nhé)
\(\Leftrightarrow\frac{4}{3.7}+\frac{4}{7.11}+...+\frac{4}{\left(4x+3\right)\left(4x+7\right)}=4.\frac{5}{12}\)
\(\Leftrightarrow\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{4x+3}-\frac{1}{4x+7}=\frac{5}{3}\)
\(\Leftrightarrow\frac{1}{3}-\frac{1}{4x+7}=\frac{5}{3}\)
\(\Leftrightarrow\frac{4x+7-3}{3\left(4x+7\right)}=\frac{5\left(4x+7\right)}{3\left(4x+7\right)}\)
\(\Rightarrow4x+7-3=20x+35\)(chỗ này dùng dấu suy ra nhé)
\(\Leftrightarrow4x-20x=35-7+3\)
\(\Leftrightarrow-16x=31\)
\(\Leftrightarrow x=-\frac{31}{16}\)
V...
Giải:
A=2/3.7+2/7.11+2/11.15+...+2/n.(n+4)
A=1/2.(4/3.7+4/7.11+4/11.15+...+4/n.(n+4)
A=1/2.(1/3-1/7+1/7-1/11+1/11-1/15+...+1/n-1/n+4)
A=1/2.(1/3-1/n+4)
A=1/6-1/2.(n+4)
⇒A<1/6
Chúc bạn học tốt!
Ta có : \(A=\dfrac{2}{3.7}+\dfrac{2}{7.11}+...+\dfrac{2}{n\left(n+4\right)}\)
\(\Rightarrow4A=\dfrac{8}{3.7}+\dfrac{8}{7.11}+...+\dfrac{8}{n\left(n+4\right)}\)
\(\Rightarrow4A=\dfrac{8}{3.7}+\dfrac{8}{7.11}+...+\dfrac{8}{n\left(n+4\right)}\)\(=\dfrac{2}{3}-\dfrac{2}{7}+\dfrac{2}{7}-\dfrac{2}{11}+...+\dfrac{2}{n}-\dfrac{2}{n+4}=\dfrac{2}{3}-\dfrac{2}{n+4}\)
\(\Rightarrow A=\dfrac{1}{6}-\dfrac{1}{2\left(n+4\right)}\)
- Xét hiệu \(A-\dfrac{1}{6}=-\dfrac{1}{2\left(n+4\right)}< 0\)
Vậy A < 1/6
\(=\dfrac{1}{4}\left(\dfrac{4}{3.7}+\dfrac{4}{7.11}+...+\dfrac{4}{51.55}\right)\)
\(=\dfrac{1}{4}\left(\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+...+\dfrac{1}{51}-\dfrac{1}{55}\right)\)
\(=\dfrac{1}{4}\left(\dfrac{1}{3}-\dfrac{1}{55}\right)=\dfrac{1}{4}\times\dfrac{52}{165}=\dfrac{13}{165}\)